Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical detectors

The use of separation techniques, such as gel permeation and high pressure Hquid chromatography interfaced with sensitive, silicon-specific aas or ICP detectors, has been particularly advantageous for the analysis of siUcones in environmental extracts (469,483—486). Supercritical fluid chromatography coupled with various detection devices is effective for the separation of siUcone oligomers that have molecular weights less than 3000 Da. Time-of-flight secondary ion mass spectrometry (TOF-sims) is appHcable up to 10,000 Da (487). [Pg.60]

Mixtures can be identified with the help of computer software that subtracts the spectra of pure compounds from that of the sample. For complex mixtures, fractionation may be needed as part of the analysis. Commercial instmments are available that combine ftir, as a detector, with a separation technique such as gas chromatography (gc), high performance Hquid chromatography (hplc), or supercritical fluid chromatography (96,97). Instmments such as gc/ftir are often termed hyphenated instmments (98). Pyrolyzer (99) and thermogravimetric analysis (tga) instmmentation can also be combined with ftir for monitoring pyrolysis and oxidation processes (100) (see Analytical methods, hyphenated instruments). [Pg.315]

Supercritical Fluid Chromatography. Supercritical fluid chromatography (sfc) combines the advantages of gc and hplc in that it allows the use of gc-type detectors when supercritical fluids are used instead of the solvents normally used in hplc. Carbon dioxide, -petane, and ammonia are common supercritical fluids (qv). For example, carbon dioxide (qv) employed at 7.38 MPa (72.9 atm) and 31.3°C has a density of 448 g/mL. [Pg.247]

T. L. Chester and J. D. Pinkston, Pressure-regulating fluid interface and phase behavior considerations in the coupling of packed-column supercritical fluid chromatography with low-pressure detectors , ]. Chromatogr. 807 265-273 (1998). [Pg.169]

A method which uses supercritical fluid/solid phase extraction/supercritical fluid chromatography (SE/SPE/SEC) has been developed for the analysis of trace constituents in complex matrices (67). By using this technique, extraction and clean-up are accomplished in one step using unmodified SC CO2. This step is monitored by a photodiode-array detector which allows fractionation. Eigure 10.14 shows a schematic representation of the SE/SPE/SEC set-up. This system allowed selective retention of the sample matrices while eluting and depositing the analytes of interest in the cryogenic trap. Application to the analysis of pesticides from lipid sample matrices have been reported. In this case, the lipids were completely separated from the pesticides. [Pg.241]

One example of normal-phase liquid chromatography coupled to gas chromatography is the determination of alkylated, oxygenated and nitrated polycyclic aromatic compounds (PACs) in urban air particulate extracts (97). Since such extracts are very complex, LC-GC is the best possible separation technique. A quartz microfibre filter retains the particulate material and supercritical fluid extraction (SPE) with CO2 and a toluene modifier extracts the organic components from the dust particles. The final extract is then dissolved in -hexane and analysed by NPLC. The transfer at 100 p.1 min of different fractions to the GC system by an on-column interface enabled many PACs to be detected by an ion-trap detector. A flame ionization detector (PID) and a 350 p.1 loop interface was used to quantify the identified compounds. The experimental conditions employed are shown in Table 13.2. [Pg.362]

In order to reduce or eliminate off-line sample preparation, multidimensional chromatographic techniques have been employed in these difficult analyses. LC-GC has been employed in numerous applications that involve the analysis of poisonous compounds or metabolites from biological matrices such as fats and tissues, while GC-GC has been employed for complex samples, such as arson propellants and for samples in which special selectivity, such as chiral recognition, is required. Other techniques include on-line sample preparation methods, such as supercritical fluid extraction (SFE)-GC and LC-GC-GC. In many of these applications, the chromatographic method is coupled to mass spectrometry or another spectrometiic detector for final confirmation of the analyte identity, as required by many courts of law. [Pg.407]

A number of analytical techniques such as FTIR spectroscopy,65-66 13C NMR,67,68 solid-state 13 C NMR,69 GPC or size exclusion chromatography (SEC),67-72 HPLC,73 mass spectrometric analysis,74 differential scanning calorimetry (DSC),67 75 76 and dynamic mechanical analysis (DMA)77 78 have been utilized to characterize resole syntheses and crosslinking reactions. Packed-column supercritical fluid chromatography with a negative-ion atmospheric pressure chemical ionization mass spectrometric detector has also been used to separate and characterize resoles resins.79 This section provides some examples of how these techniques are used in practical applications. [Pg.407]

Supercritical fluid chromatography (SEC) was first reported in 1962, and applications of the technique rapidly increased following the introduction of commercially available instrumentation in the early 1980s due to the ability to determine thermally labile compounds using detection systems more commonly employed with GC. However, few applications of SEC have been published with regard to the determination of triazines. Recently, a chemiluminescence nitrogen detector was used with packed-column SEC and a methanol-modified CO2 mobile phase for the determination of atrazine, simazine, and propazine. Pressure and mobile phase gradients were used to demonstrate the efficacy of fhe fechnique. [Pg.442]

A powerful advantage of SFC is that more detectors can be interfaced with SFC than with any other chromatographic technique (Table 4.30). There are only a few detectors which operate under supercritical conditions. Consequently, as the sample is transferred from the chromatograph to the detector, it must undergo a phase change from a supercritical fluid to a liquid or gas before detection. Most detectors can be made compatible with both cSFC and pSFC if flow and pressure limits are taken into account appropriately. GC-based detectors such as FID and LC-based detectors such as UVD are the most commonly used, but the detection limits of both still need to be improved to reach sensitivity for SFC compatible with that in LC and GC. Commercial cSFC-FID became available in... [Pg.210]

RI(D) Refractive index (detector) SFI Supercritical fluid injection... [Pg.759]

The nature of a supercritical fluid enables both gas and liquid chromatographic detectors to be used in SFC. Flame ionization (FID), nitrogen phosphorus (NPD), flame photometric (FPD) GC detectors (p. 100 etseq.) and UV and fluorescence HPLC monitors are all compatible with a supercritical fluid mobile phase and can be adapted to operate at the required pressures (up to several hundred bar). A very wide range of solute types can therefore be detected in SFC. In addition the coupled or hyphenated techniques of SFC-MS and SFC-FT-IR are attractive possibilities (cf. GC-MS and GC-IR, p. 114 el seq.). [Pg.151]

In supercritical fluid chromatography (SFC) the mobile phase is a supercritical fluid, such as carbon dioxide [15]. A supercritical fluid can be created either by heating a gas above its critical temperature or compressing a liquid above its critical pressure. Generally, an SFC system typically has chromatographic equipment similar to a HPLC, but uses GC columns. Both GC and LC detectors are used, thus allowing analysis of samples that cannot be vaporized for analysis by GC, yet cannot be detected with the usual LC detectors, to be both separated and detected using SFC. SFC is also in other... [Pg.109]

Electrochemical detectors (ECD) gas chromatography, 4 615 liquid chromatography, 4 622 6 387, 449 supercritical fluid chromatography, 4 631... [Pg.302]

Most supercritical fluid chromatographs use carbon dioxide as the supercritical eluent, as it has a convenient critical point of 31.3°C and 72.5 atmospheres. Nitrous oxide, ammonia and n-pentane have also been used. This allows easy control of density between 0.2g ml-1 and 0.8g ml-1 and the utilization of almost any detector from liquid chromatography or gas chromatography. [Pg.58]

Supercritical fluid chromatography uses detectors from both liquid chromatography and gas chromatography. A summary of detection systems used in supercritical fluid chromatography has been documented [24]. [Pg.60]

One of the most commonly used detection systems in a gas chromatography laboratory is the electron capture detector. The first paper [25] to be published demonstrating the use of an electron capture detector with supercritical fluid chromatography showed that with supercritical fluid chromatography sensitivity to about 50pg minimum detection limit on column was obtainable. [Pg.60]

A paper has been published showing the use of the photoionization detector [26], Polyaromatic hydrocarbons are very sensitive using the photoionization detector and the levels detected did not break any new ground in terms of sensitivity. It did inspire HNS Systems (Newtown MA, USA), who market a photoionization detector, to try the detector with a capillary system, interfaced to a Lee Scientific 602 supercritical fluid chromatography (Lee Scientific, Salt Lake City, Utah, USA). [Pg.60]

The amount detected by this system (0.3pg on column) was below the level which could have been determined using a flame ionization detector. Initial indications show that the photoionization detector may be a very useful detector for people who wish to get to lower levels on the supercritical fluid chromatography and cannot concentrate their sample. [Pg.61]

Todd, J., Mylchreest, I., Berry, T. and Games, D. Supercritical chromatography mass spectrometry with an ion-trap detector. Finnigan MAT IDT 46. [Pg.117]

GC = gas chromatography GPC = gel permeation chromatography ECD = electron capture detector MS = mass spectrometry MSD = mass selective detector SFE = supercritical fluid extraction TLC = thin layer chromatography... [Pg.143]

CZE = capillary zone electrophoresis EC = electrochemical detector GC = gas chromatography HCD = Hall conductivity detector HPLC = high performance liquid chromatography IDMS = isotope dilution mass spectrometry MS = mass spectrometry RSD = relative standard deviation SEE = supercritical fluid extraction SPE = solid phase extraction UV = ultraviolet absorbance detection... [Pg.140]


See other pages where Supercritical detectors is mentioned: [Pg.597]    [Pg.201]    [Pg.391]    [Pg.89]    [Pg.522]    [Pg.313]    [Pg.316]    [Pg.324]    [Pg.326]    [Pg.825]    [Pg.210]    [Pg.212]    [Pg.212]    [Pg.213]    [Pg.475]    [Pg.476]    [Pg.378]    [Pg.13]    [Pg.106]    [Pg.908]    [Pg.938]    [Pg.369]    [Pg.573]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.376]   
See also in sourсe #XX -- [ Pg.124 , Pg.125 ]




SEARCH



Flame ionization detector supercritical fluid chromatography

Supercritical fluid chromatography detectors

Supercritical fluid extraction with detectors

Supercritical fluids detector

Supercritical light scattering detector

Types of detectors used in combination with supercritical fluid extractors

© 2024 chempedia.info