Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical columns

Supercritical fractionation of a liquid lipid feed material is usually carried out in a packed column. Standard columns are not available commercially and have to be custom built either in-house or by manufacturers of extraction units. Lab-scale and pilot-scale supercritical columns, 0.6-13.6 m high with internal diameters of 14.3-68 mm are available in research labs around the world and have been used for the processing of deodorizer distillates (56, 57, 86-90), vegetable and fish oils (91-105), cocoa butter, and milkfat (106-109). A schematic diagram of a typical SCCO2 fractionation column (2.8 m, 2.54 cm o.d.), which was designed and built... [Pg.2818]

Figures 29-.3 and 29-4 compare Ihe performance characteristics of a packed column when elution is performed with supercritical carbon dioxide and a conventional liquid mobile phase. Figure 29 3 shows that at a linear mobile-phase velocity of 0.6 cm/s. the supercritical column yields a plate height of 0.013 mm whereas... Figures 29-.3 and 29-4 compare Ihe performance characteristics of a packed column when elution is performed with supercritical carbon dioxide and a conventional liquid mobile phase. Figure 29 3 shows that at a linear mobile-phase velocity of 0.6 cm/s. the supercritical column yields a plate height of 0.013 mm whereas...
Liquid phase chromatography can use a supercritical fluid as an eluent. The solvent evaporates on leaving the column and allows detection by FID. At present, there are few instances in the petroleum industry using the supercritical fluid technique. [Pg.27]

Due to possible environmental problems with acetone, new technologies are being developed for the production of deoiled lecithins involving treatment of Hpid mixtures with supercritical gases or supercritical gas mixtures (10—12). In this process highly viscous cmde lecithin is fed into a separation column at several levels. The supercritical extraction solvent flows through the column upward at a pressure of 8 MPa (80 bar) and temperature between 40 and 55°C. The soy oil dissolves together with a small amount of lecithin. [Pg.100]

Cyclopentadiene oligomers up to octamers can be effectively analy2ed and quantified by supercritical fluid chromatography using a chemically bonded methyl siUcone capillary column. [Pg.430]

Extraction from Aqueous Solutions Critical Fluid Technologies, Inc. has developed a continuous countercurrent extraction process based on a 0.5-oy 10-m column to extract residual organic solvents such as trichloroethylene, methylene chloride, benzene, and chloroform from industrial wastewater streams. Typical solvents include supercritical CO9 and near-critical propane. The economics of these processes are largely driven by the hydrophihcity of the product, which has a large influence on the distribution coefficient. For example, at 16°C, the partition coefficient between liquid CO9 and water is 0.4 for methanol, 1.8 for /i-butanol, and 31 for /i-heptanol. [Pg.2003]

F. M. Ean as and M. A. Ruggiero, On-line coupling of supercritical fluid exti action to capillaiy column electi odriven separation techniques , J. Microcolumn Sep. 12 61-67 (2000). [Pg.150]

R. E. Robinson, D. Tong, R. Moulder, K. D. Battle and A. A. Clifford, Unified open tubular column cliromatography sequential gas chromatography, at normal pressures and supercritical fluid cliromatography on the same column , J. Microcolumn. Sep. 3 403-409(1991). [Pg.168]

T. A. Berger, Practical advantages of packed column supercritical fluid chromatography in supporting combinations chemistiy , in Unified Chromatography, J. P. Parcher and T. L. Chester (Eds), ACS Symposium Series 748, American Chemical Society, Washington, DC, pp. 203-233 (2000). [Pg.168]

T. L. Chester and J. D. Pinkston, Pressure-regulating fluid interface and phase behavior considerations in the coupling of packed-column supercritical fluid chromatography with low-pressure detectors , ]. Chromatogr. 807 265-273 (1998). [Pg.169]

An on-line supercritical fluid chromatography-capillary gas chromatography (SFC-GC) technique has been demonstrated for the direct transfer of SFC fractions from a packed column SFC system to a GC system. This technique has been applied in the analysis of industrial samples such as aviation fuel (24). This type of coupled technique is sometimes more advantageous than the traditional LC-GC coupled technique since SFC is compatible with GC, because most supercritical fluids decompress into gases at GC conditions and are not detected by flame-ionization detection. The use of solvent evaporation techniques are not necessary. SFC, in the same way as LC, can be used to preseparate a sample into classes of compounds where the individual components can then be analyzed and quantified by GC. The supercritical fluid sample effluent is decompressed through a restrictor directly into a capillary GC injection port. In addition, this technique allows selective or multi-step heart-cutting of various sample peaks as they elute from the supercritical fluid... [Pg.325]

Another application of SFC-GC was for the isolation of chrysene, a poly aromatic hydrocarbon, from a complex liquid hydrocarbon industrial sample (24). A 5 p.m octadecyl column (200 cm X 4.6 mm i.d.) was used for the preseparation, followed by GC analysis on an SE-54 column (25 m X 0.2 mm i.d., 0.33 p.m film thickness). The direct analysis of whole samples transferred from the supercritical fluid chromatograph and selective and multi-heart-cutting of a particular region as it elutes from the SFC system was demonstrated. The heart-cutting technique allows the possibility of separating a trace component from a complex mixture (Figure 12.21). [Pg.327]

Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc. Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc.
Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society. Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society.
Figure 12.24 Schematic diagram of the multidimensional packed capillary to open tubular column SFC-SFC system. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al., Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switching interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society. Figure 12.24 Schematic diagram of the multidimensional packed capillary to open tubular column SFC-SFC system. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al., Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switching interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society.
One example of normal-phase liquid chromatography coupled to gas chromatography is the determination of alkylated, oxygenated and nitrated polycyclic aromatic compounds (PACs) in urban air particulate extracts (97). Since such extracts are very complex, LC-GC is the best possible separation technique. A quartz microfibre filter retains the particulate material and supercritical fluid extraction (SPE) with CO2 and a toluene modifier extracts the organic components from the dust particles. The final extract is then dissolved in -hexane and analysed by NPLC. The transfer at 100 p.1 min of different fractions to the GC system by an on-column interface enabled many PACs to be detected by an ion-trap detector. A flame ionization detector (PID) and a 350 p.1 loop interface was used to quantify the identified compounds. The experimental conditions employed are shown in Table 13.2. [Pg.362]

Although on-line sample preparation cannot be regarded as being traditional multidimensional chromatography, the principles of the latter have been employed in the development of many on-line sample preparation techniques, including supercritical fluid extraction (SFE)-GC, SPME, thermal desorption and other on-line extraction methods. As with multidimensional chromatography, the principle is to obtain a portion of the required selectivity by using an additional separation device prior to the main analytical column. [Pg.427]

The use of both sub- and supercritical fluids as eluents yields mobile phases with increased diffusivity and decreased viscosity relative to liquid eluents [23]. These properties enhance chromatographic efficiency and improve resolution. Higher efficiency in SFC shifts the optimum flowrate to higher values so that analysis time can be reduced without compromising resolution [12]. The low viscosity of the eluent also reduces the pressure-drop across the chromatographic column and facilitates the... [Pg.301]

A number of analytical techniques such as FTIR spectroscopy,65-66 13C NMR,67,68 solid-state 13 C NMR,69 GPC or size exclusion chromatography (SEC),67-72 HPLC,73 mass spectrometric analysis,74 differential scanning calorimetry (DSC),67 75 76 and dynamic mechanical analysis (DMA)77 78 have been utilized to characterize resole syntheses and crosslinking reactions. Packed-column supercritical fluid chromatography with a negative-ion atmospheric pressure chemical ionization mass spectrometric detector has also been used to separate and characterize resoles resins.79 This section provides some examples of how these techniques are used in practical applications. [Pg.407]

The submitters determined the crystalline hydroxy esters to be >99.9% diastereomerically pure by supercritical fluid chromatography (EMdiol silica column and a Chiralcel (+) OD-(H) column (Chiral... [Pg.95]

The basic process outline is depicted in Figure 5.2 moist un-roasted coffee beans and CO2 are fed counter-currently into the extractor under supercritical conditions. Caffeine is selectively extracted into the CO2 and this stream is led to a water-wash column to remove caffeine at a reduced pressure, the CO2 being recycled back to the extraction column. Extraction of the caffeine into water is necessary to avoid dropping the CO2 pressure too low, since compression is energy-intensive. There is now the problem of separating the caffeine (which is used in soft drinks and pharmaceu-... [Pg.138]

High performance liquid chromatography (HPLC) has been by far the most important method for separating chlorophylls. Open column chromatography and thin layer chromatography are still used for clean-up procedures to isolate and separate carotenoids and other lipids from chlorophylls and for preparative applications, but both are losing importance for analytical purposes due to their low resolution and have been replaced by more effective techniques like solid phase, supercritical fluid extraction and counter current chromatography. The whole analysis should be as brief as possible, since each additional step is a potential source of epimers and allomers. [Pg.432]

Buskov, S., Sprensen, H., and Sprensen, S., Separation of chlorophylls and their degradation products using packed column supercritical fluid chromatography (SEC), J. High Resol. Chromatogr, 22, 339, 1999. [Pg.445]

Supercritical Fluid Chromatography with Packed Columns Techniques and Applications, edited by Klaus Anton... [Pg.432]

Supercritical fluid chromatography (SEC) was first reported in 1962, and applications of the technique rapidly increased following the introduction of commercially available instrumentation in the early 1980s due to the ability to determine thermally labile compounds using detection systems more commonly employed with GC. However, few applications of SEC have been published with regard to the determination of triazines. Recently, a chemiluminescence nitrogen detector was used with packed-column SEC and a methanol-modified CO2 mobile phase for the determination of atrazine, simazine, and propazine. Pressure and mobile phase gradients were used to demonstrate the efficacy of fhe fechnique. [Pg.442]


See other pages where Supercritical columns is mentioned: [Pg.213]    [Pg.1000]    [Pg.213]    [Pg.1000]    [Pg.596]    [Pg.609]    [Pg.74]    [Pg.201]    [Pg.546]    [Pg.323]    [Pg.226]    [Pg.2378]    [Pg.4]    [Pg.5]    [Pg.12]    [Pg.136]    [Pg.141]    [Pg.147]    [Pg.168]    [Pg.241]    [Pg.250]    [Pg.251]    [Pg.303]    [Pg.324]    [Pg.391]    [Pg.302]    [Pg.213]   
See also in sourсe #XX -- [ Pg.122 , Pg.123 ]




SEARCH



Chiral columns supercritical fluid

Column oven, supercritical fluid

Column oven, supercritical fluid Columns

Column oven, supercritical fluid chromatography

Column packing methods supercritical fluid

Column supercritical fluid chromatography

Packed columns supercritical fluid

Supercritical fluid chromatography chiral columns

Supercritical fluid chromatography column selection

Supercritical high-pressure column processes

© 2024 chempedia.info