Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical carbon dioxide procedure

In the first of the three extraction methods, the natural product (coffee beans, tea leaves, or kola beans) are treated with an organic solvent that dissolves the caffeine from the plant material. The solvent is then evaporated leaving behind the pure caffeine. A second method follows essentially the same procedure, except that hot water is used as the solvent for the caffeine. A more recent procedure involves the use of supercritical carbon dioxide for the extraction process. Supercritical carbon dioxide is a form of the familiar gas that exists at high temperature and high pressure. It behaves as both a liquid and a gas. Not only is the supercritical carbon dioxide procedure an efficient method of extracting caffeine, hut it has virtually none of the harmful environmental and health problems associated with each of the other two methods of extraction. [Pg.139]

Attention should be drawn to a very interesting possibility, viz subjecting drugs before their use as teas to pressure, followed by rapid release of the pressure (so-called PEX procedure), in order to achieve a kind of opening up and thereby improving the liberation of many constituents during the preparation of the tea. The use of supercritical carbon dioxide in this connection is particularly suitable [8]. [Pg.26]

Another challenge is to develop methods to replace the volatile organic solvents that are used in many industrial procedures. One choice is water as a solvent it is easily repurified, and has a harmless vapor. Another choice is supercritical carbon dioxide, a good solvent for many organic substances. It is not as innocuous as is water, but carbon dioxide can be easily recovered and reused. It is currently used to remove caffeine from coffee, and is being developed as a dry-cleaning solvent to replace organic solvents (Chapter 9). [Pg.143]

The supercritical fluid chromatographic procedure [20] described in section 9.1.1.5 for the determination of organochlorine insecticides in soils has also been applied to river sediments. Snyder et al. [20] compared supercritical fluid extraction with classical sonication and Soxhlet extraction for selected organochlorine insecticides. Samples of sediments extracted with supercritical carbon dioxide modified with 3% methanol at 350atm and 50°C gave =85% recovery of organochlorine insecticides including Dichlorvos, Diazinon, Endrin, Endrin aldehyde, decachlorobiphenyl, p,p -DDT and Mirex. [Pg.219]

Another environmental issue is the use of organic solvents. The use of chlorinated hydrocarbons, for example, has been severely curtailed. In fact, so many of the solvents favored by organic chemists are now on the black list that the whole question of solvents requires rethinking. The best solvent is no solvent, and if a solvent (diluent) is needed, then water has a lot to recommend it. This provides a golden opportunity for biocatalysis, since the replacement of classic chemical methods in organic solvents by enzymatic procedures in water at ambient temperature and pressure can provide substantial environmental and economic benefits. Similarly, there is a marked trend toward the application of organometal-lic catalysis in aqueous biphasic systems and other nonconventional media, such as fluorous biphasic, supercritical carbon dioxide and ionic liquids. ... [Pg.195]

A continuous procedure for the alkylation of mesitylene and anisole with supercritical propene, or propan-2-ol in supercritical carbon dioxide, with a heterogeneous polysiloxane-supported solid acid Deloxan catalyst has been reported giving 100% selectivity for monoalkylation of mesitylene with 50% conversion at 250 °C and 150 bar by propan-2-ol in supercritical carbon dioxide. p-Toluenesulfonic acid monohydrate has been demonstrated as an efficient catalyst for the clean alkylation of aromatics using activated alkyl halides, alkenes or tosylates under mild conditions. Cyclohexene, for example, reacts with toluene to give 100% cyclohexyltoluenes (o m p-29 18 53) under these circumstances. [Pg.291]

Some more exotic procedures can be suggested as well The combination of ILs wifh fhe use of supercritical carbon dioxide (scCOj) as an extractant represents a potential combination for the reaction of synthesis and downstream separation, as well as for purification. [Pg.302]

Supercritical carbon dioxide has been used as a dispersing medium for the manufacture and processing of polymeric materials. The process allows for the synthesis of high molar mass acrylic polymers in the form of micrometer-sized particles with a narrow size distribution. This procedure represents an environmentally responsible alternative to aqueous and organic dispersing media for heterogeneous dispersion polymerizations (Fox, 1994). [Pg.152]

In contrast to the decaffeination of coffee, which is primarily executed with green coffee, black tea has to be extracted from the fermented aromatic material. Vitzthum and Hubert have described a procedure for the production of caffeine-free tea in the German patent application, 2127642 [11]. The decaffeination runs in multi-stages. First, the tea will be clarified of aroma by dried supercritical carbon dioxide at 250 bar and 50°C. After decaffeination with wet CO2 the moist leaf-material will be dried in vacuum at 50°C and finally re-aromatized with the aroma extract, removed in the first step. Therefore, the aroma-loaded supercritical CO2 of 300 bar and 40°C will be expanded into the extractor filled with decaffeinated tea. The procedure also suits the production of caffeine-free instant tea, in which the freeze-dried watery extract of decaffeinated tea will be impregnated with the aromas extracted before. [Pg.540]

Extraction of fat by supercritical carbon dioxide was investigated as an important option for minimizing the expanded use of frequently flammable and carcinogenic solvents in food analysis. Unfortunately, the presence of moisture in foods has an adverse effect on the quantitative extraction of fat by supercritical fluid extraction (SEE). Hence, samples have to be lyophilized first. The total fat content of freeze-dried meat and oilseed samples was found to be comparable to values derived from Soxhlet-extracted samples (26). Besides, only small amounts of residual lipids could be recovered by an additional extraction of the SFE-extracted matrix by the Bligh and Dyer solvent extraction procedure. As far as the minor constituents are concerned, it was found that the extraction recovery ranged from 99% for PC to 88% for PA. Hence, Snyder et al. concluded that SFE can be used as a rapid, automated method to obtain total fat, including total phospholipids, from foods (26). [Pg.256]

Supercritical Carbon Dioxide Treatment and Testing Procedures... [Pg.126]

A detailed description of the experimental apparatus and procedure used for the aqueous study are given elsewhere (Roop and Akgerman, Ind. Eng. Chem. R., in review) Static equilibrium extractions were carried out in a high pressure equilibrium cell (300 mL Autoclave). After the vessel is initially charged with 150 mL of water containing 6.8 wt.% phenol and supercritical carbon dioxide (and a small amount of entrainer, if desired), the contents were mixed for one hour followed by a two hour period for phase separation. Samples from both the aqueous phase and the supercritical phase were taken for analysis and the distribution coefficient for phenol calculated. [Pg.470]

Finally, dairy products may be enriched with naturally occurring CLA by fat fractionation procedures. Fractionation of anhydrous milk fat by a supercritical carbon dioxide system (Romero et al., 2000) or by controlled cooling and agitation (O Shea et al., 2000) resulted in both cases in a more than 60% increase in the CLA content as compared to the parent fat also concentrations of PUFA and VA were increased. [Pg.199]

Well ordered mesoporous silicate films were prepared in supercritical carbon dioxide.[218] In the synthesis in aqueous or alcoholic solution, film morphology of preorganized surfactants on substrate cannot be fully prescribed before silica-framework formation, because structure evolution is coincident with precursor condensation. The rapid and efficient preparation of mesostructured metal oxides by the in situ condensation of metal oxides within preformed nonionic surfactants can be done in supercritical CCU- The synthesis procedure is as follows. A copolymer template is prepared by spin-coating from a solution containing a suitable acid catalyst. Upon drying and annealing to induce microphase separation and enhance order, the acid partitions into the hydrophilic domain of the template. The template is then exposed to a solution of metal alkoxide in humidified supercritical C02. The precursor diffuses into the template and condenses selectively within the acidic hydrophilic domain of the copolymer to form the incipient metal oxide network. The templates did not go into the C02 phase because their solubility is very low. The alcohol by-product of alkoxide condensation is extracted rapidly from the film into the C02 phase, which promotes rapid and extensive network condensation. Because the template and the metal oxide network form in discrete steps, it is possible to pattern the template via lithography or to orient the copolymer domains before the formation of the metal oxide network. [Pg.557]

To confirm Stejskal and Kratochvil s theories of chemical composition distribution, graft copolymers of methyl methacrylate (MMA) and MMA-terminated PDMS were first synthesized by free-radical procedures by the Virginia Tech researchers. Any unincorporated PDMS macromonomer was then stripped with supercritical carbon dioxide and finally the polymer was... [Pg.222]

We investigated the chemoenzymatic synthesis of block copolymers combining eROP and ATRP using a bifunctional initiator. A detailed analysis of the reaction conditions revealed that a high block copolymer yield can be realized under optimized reaction conditions. Side reactions, such as the formation of PCL homopolymer, in the enzymatic polymerization of CL could be minimized to < 5 % by an optimized enzyme (hying procedure. Moreover, the structure of the bifunctional initiator was foimd to play a major role in the initiation behavior and hence, the yield of PCL macroinitiator. Block copolymers were obtained in a consecutive ATRP. Detailed analysis of the obtained polymer confirmed the presence of predominantly block copolymer structures. Optimization of the one-pot procedure proved more difficult. While the eROP was compatible with the ATRP catalyst, incompatibility with MMA as an ATRP monomer led to side-reactions. A successfiil one-pot synthesis could only be achieved by sequential addition of the ATRP components or partly with inert monomers such as /-butyl methacrylate. One-pot block copolymer synthesis was successful, however, in supercritical carbon dioxide. Side reactions such as those observed in organic solvents were not apparent. [Pg.228]

Static Mode. The system can be used as a static cell to obtain equilibrium data for supercritical carbon dioxide and cold-pressed Valencia orange oil. Using the system as a static cell to obtain phase equilibrium data under supercritical conditions was complicated by two factors 1) trapping small samples without disturbing the equilibrium Is difficult and 2) the small sample size makes subsequent analysis complex. The procedure was as follows. [Pg.119]

Fractionation of liquid mixtures with supercritical carbon dioxide in counter-cur-rent columns can be operated continuously, because liquids can be easily pumped into and out of a column. This represents a big advantage over extrachon from solid materials, as it allows real process intensification - large quantities of feed can be processed with only a small volume under high pressure at any given time. Frac-tionahon, mostly of natural products or extracts, has been extensively studied at the laboratory and pilot-plant scale. The design principles of this type of column have been established, and scale-up procedures devised [1,6]. They can be operated with reflux, as in distillation, and frachonahon can therefore become an extremely se-lechve process. Difficult separahons can be effechvely carried out. [Pg.210]


See other pages where Supercritical carbon dioxide procedure is mentioned: [Pg.265]    [Pg.161]    [Pg.28]    [Pg.196]    [Pg.367]    [Pg.82]    [Pg.94]    [Pg.219]    [Pg.18]    [Pg.122]    [Pg.290]    [Pg.170]    [Pg.33]    [Pg.205]    [Pg.317]    [Pg.539]    [Pg.14]    [Pg.208]    [Pg.77]    [Pg.576]    [Pg.485]    [Pg.50]    [Pg.57]    [Pg.73]    [Pg.76]    [Pg.407]    [Pg.240]   
See also in sourсe #XX -- [ Pg.77 ]

See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Polymerization procedure supercritical carbon dioxide

Supercritical carbon dioxid

Supercritical carbon dioxide

© 2024 chempedia.info