Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical composition and distribution

The powders of zeolites of various trademarks are used to produce petroleum-refining catalysts. In this connection, it is very important to have complete information concerning not only chemical composition and distribution of impurity elements, but also shape, surface, stmcture and sizes of particles. It allows a more detailed analysis of the physical-chemical characteristics of catalysts, affecting their activity at different stages of technological process. One prospective for solving these tasks is X-ray microanalysis with an electron probe (EPMA). [Pg.438]

In previous studies we found that improved emission-control devices (such as hot-side electrostatic precipitaters and wet-scrubber systems) now being installed on modern pulverized-coal-fired power plants modify the quantity, chemical composition, and distribution characteristics of fine aerosol emissions (12,13). Such modifications must be understood to adequately assess human health and environmental hazards, and to apportion the contributions of sources to urban pollutant inventories. [Pg.174]

A series of antimicrobial polymethacrylates (PMA) containing quaternary ammonium cations (QUAT) has been synthesised via the N-alkylation of thiazole and triazole pendent groups using butyl iodide (Bui), and the chemical composition and distribution of amphiphilic polycations was characterised by nuclear magnetic resonance spectroscopy [13]. The correlation between their structure and antibacterial properties are presented in Figure 8.1, and clearly indicates that polyelectrolytes are responsible for their excellent selective toxicity against bacteria. [Pg.180]

Such solid solutions are solids with chemical disorder because the ionic defects are generated by chemical composition and distributed statistically. Their concentration is independent on temperature and oxygen partial pressure. The activation energy for ion conduction is much higher ( 100 kJ/mol) as compared to that for solids with structural disorder ( 20-40 kJ/mol). [Pg.1990]

When deaUng with copolymer systems, one encounters the special problem of copolymer characterization since a copolymer is far from well-defined only by its chemical formula. Copolymers vary by a number of characterization variables. Molar mass, chemical composition, and distribution functions, tacticity, sequence distribution, branching, and end groups determine their thermodynamic behavior in solution. It is far from clear how these parameters influence the thermodynamic properties in detail. Unfortunately, there usually is not much information in the original papers the available ones are added to each system in this book. [Pg.4]

The properties of fillers which induence a given end use are many. The overall value of a filler is a complex function of intrinsic material characteristics, eg, tme density, melting point, crystal habit, and chemical composition and of process-dependent factors, eg, particle-si2e distribution, surface chemistry, purity, and bulk density. Fillers impart performance or economic value to the compositions of which they are part. These values, often called functional properties, vary according to the nature of the appHcation. A quantification of the functional properties per unit cost in many cases provides a vaUd criterion for filler comparison and selection. The following are summaries of key filler properties and values. [Pg.366]

Characterization. Ceramic bodies are characterized by density, mass, and physical dimensions. Other common techniques employed in characterizing include x-ray diffraction (XRD) and electron or petrographic microscopy to determine crystal species, stmcture, and size (100). Microscopy (qv) can be used to determine chemical constitution, crystal morphology, and pore size and morphology as well. Mercury porosknetry and gas adsorption are used to characterize pore size, pore size distribution, and surface area (100). A variety of techniques can be employed to characterize bulk chemical composition and the physical characteristics of a powder (100,101). [Pg.314]

The shiny should always be defined as completely as possible by noting suspended solids concentration, particle size distribution, viscosity, density of solids and liquid, temperature, chemical composition, and so on. [Pg.1694]

In EDXS the so-called spectrum-image method [4.122] can also be employed. A series of spectra is taken from a scanned rectangular field resulting in a data cube with its upper plane as the scanned x-y area and the third axis as the X-ray spectrum. Comprehensive information about the chemical composition and element distribution is extractable from this data set by subsequent processing. [Pg.206]

The characterisation of materials is a central necessity of modern materials science. Effectively, it signifies making precise distinctions between different specimens of what is nominally the same material. The concept covers qualitative and quantitative analysis of chemical composition and its variation between phases the examination of the spatial distribution of grains, phases and of minor constituents the crystal structures present and the extent, nature and distribution of structural imperfections (including the stereological analysis outlined in Chapter 5). [Pg.213]

The behavior of liposomes in vivo can be influenced to a considerable extent by varying chemical composition and physical properties. Parameters affecting rate of clearance from the blood and tissue distribution include size, composition, dose, and surface characteristics (e.g., charge, hydrophobicity, presence of homing devices such as antibodies). [Pg.281]

Using MS detection relaxes the constraints on LC resolution, because additional separation occurs in the mass domain. In principle, LC-MS may yield a complete 2D distribution of a polymer according to chemical composition and molar mass. If MS detection is employed, the efficient cleaning in the LC step makes it possible to use total ion monitoring and even to identify unknown compounds from the sample. As extracts often contain interfering compounds, mass spectrometry in selective ion mode is a practical detector. Fully automated multidimensional LC-MS-MS-MS systems are available. [Pg.555]

As can be seen, there are significant differences between copolymers 1 and 2. Copolymer 1 having a high PEO-to-PVA ratio exhibits a quite broad distribution with regard to chemical composition and a significant amount of nongrafted PEO. In contrast, copolymer 2 having a low PEO-to-PVA ratio does not contain free PEO. [Pg.403]

The droplet size distribution produced by vaporization-condensation technique is strongly dependent on the chemical composition and properties of the liquid. If well controlled on a small scale, vaporization-condensation technique can produce moderately mono-disperse sprays with geometric standard deviations ranging from about 1.2 to 1.8.[88]... [Pg.62]

The Langmuir-Blodgett method has been used to prepare hybrid films of an anionic Ru(ll) cyanide polypyridyl complex with LDHs [170]. An LDH film was formed on mica owing to the interaction between LDHs particles and the Ru(ll) cyanide polypyridyl complex that was pre-dispersed on the surface of mica. Water-in-oU emulsions composed of octane, water and sodium dodecyl sulfate (SDS) have been used to synthesize Mg/Al LDHs with carbonate as the interlayer anion [171] by constant pH or variable pH methods. A floccule or fiber-like LDH material that possesses similar chemical composition and properties to that synthesized using a conventional variable pH method was obtained. The resulting LDH shows high surface area and a narrow distribution of mesopores. [Pg.112]

Chemical composition and reactivity of the atomization air, therefore, affects droplet vaporization and transport in spray flames. In order to determine quantitatively the extent of this variation, information was obtained on the spatial distribution of droplet size and velocity, as well as their temporal distributions at various spatial positions in the spray flames. [Pg.259]

It is evident that with the discrete cycles of the non-flame atomizers several reactions (desolvation, decomposition, etc.) which occur simultaneously" albeit over rather broad zones in a flame (due to droplet size distributions] are separated in time using a non-flame atomizer. This allows time and temperature optimization for each step and presumably improves atomization efficiencies. Unfortunately, the chemical composition and crystal size at the end of the dry cycle is matrix determined and only minimal control of the composition at the end of the ash cycle is possible, depending on the relative volatilities and reactivities of the matrix and analyte. These poorly controlled parameters can and do lead to changes in atomization efficiencies and hence to matrix interferences. [Pg.102]

The term mixed micelle refers to those micelles composed of two or more surface active agents. The sizes of micelles in a solution obey a distribution function that is characteristic of their chemical composition and the ionic nature of the solution in which they reside. [Pg.464]

Toxicology. Epidemiological evidence suggests that workers intimately exposed to the products of combustion or distillation of bituminous coal are at increased risk of cancer at many sites, including lungs, kidney, and skin. The chemical composition and particle size distribution of coal tar pitch volatiles (CTPV) from different sources are significant variables in determining toxicity. ... [Pg.178]

Copper is distributed widely in nature as sulfides, oxides, arsenides, arsenosulfides, and carbonates. It occurs in the minerals cuprite, chalcopyrite, azurite, chalcocite, malachite and bornite. Most copper minerals are sulfides or oxides. Native copper contains the metal in uncombined form. The principal copper minerals with their chemical compositions and percentage of copper are listed below ... [Pg.253]


See other pages where Chemical composition and distribution is mentioned: [Pg.75]    [Pg.2]    [Pg.384]    [Pg.62]    [Pg.246]    [Pg.763]    [Pg.214]    [Pg.509]    [Pg.350]    [Pg.340]    [Pg.154]    [Pg.13]    [Pg.75]    [Pg.2]    [Pg.384]    [Pg.62]    [Pg.246]    [Pg.763]    [Pg.214]    [Pg.509]    [Pg.350]    [Pg.340]    [Pg.154]    [Pg.13]    [Pg.271]    [Pg.368]    [Pg.430]    [Pg.30]    [Pg.410]    [Pg.57]    [Pg.66]    [Pg.107]    [Pg.553]    [Pg.185]    [Pg.248]    [Pg.127]    [Pg.432]    [Pg.496]    [Pg.1]    [Pg.177]    [Pg.254]    [Pg.97]   


SEARCH



Chemical composition and

Chemical composition distribution

Chemical distribution

Composition distribution

Compositional distribution

© 2024 chempedia.info