Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur decomposition

This is an exothermic, reversible, homogeneous reaction taking place in a single liquid phase. The liquid butadiene feed contains 0.5 percent normal butane as an impurity. The sulfur dioxide is essentially pure. The mole ratio of sulfur dioxide to butadiene must be kept above 1 to prevent unwanted polymerization reactions. A value of 1.2 is assumed. The temperature in the process must be kept above 65°C to prevent crystallization of the butadiene sulfone but below lOO C to prevent its decomposition. The product must contain less than 0.5 wt% butadiene and less thM 0.3 wt% sulfur dioxide. [Pg.118]

Sulfur comes mainly from the decomposition of organic matter, and one observes that with the passage of time and of gradual settling of material into strata, the crude oils lose their sulfur in the form of H2S that appears in the associated gas, a small portion stays with the liquid. Another possible origin of H2S is the reduction of sulfates by hydrogen by bacterial action of the type desulforibrio desulfuricans (Equation 8.1) ... [Pg.321]

H2S is found with the reservoir gas and dissolved in the crude (< 50 ppm by weight), but it is formed during refining operations such as catalytic cracking, hydrodesulfurization, and thermal cracking or by thermal decomposition of sulfur[Pg.322]

Hydrogen chloride released dissolves in water during condensation in the crude oil distillation column overhead or in the condenser, which cause corrosion of materials at these locations. The action of hydrochloric acid is favored and accelerated by the presence of hydrogen sulfide which results in the decomposition of sulfur-containing hydrocarbons this forces the refiner to inject a basic material like ammonia at the point where water condenses in the atmospheric distillation column. [Pg.329]

Mercaptans are naturally present in crude oil (Chapters 1 and 8), or they result from the decomposition of other sulfur compounds during thermai or catalytic cracking operations. [Pg.404]

Although thiosulfate is one of the few reducing titrants not readily oxidized by contact with air, it is subject to a slow decomposition to bisulfite and elemental sulfur. When used over a period of several weeks, a solution of thiosulfate should be restandardized periodically. Several forms of bacteria are able to metabolize thiosulfate, which also can lead to a change in its concentration. This problem can be minimized by adding a preservative such as Hgl2 to the solution. [Pg.344]

Dehydration or Chemical Theory. In the dehydration or chemical theory, catalytic dehydration of ceUulose occurs. The decomposition path of ceUulose is altered so that flammable tars and gases are reduced and the amount of char is increased ie, upon combustion, ceUulose produces mainly carbon and water, rather than carbon dioxide and water. Because of catalytic dehydration, most fire-resistant cottons decompose at lower temperatures than do untreated cottons, eg, flame-resistant cottons decompose at 275—325°C compared with about 375°C for untreated cotton. Phosphoric acid and sulfuric acid [8014-95-7] are good examples of dehydrating agents that can act as efficient flame retardants (15—17). [Pg.485]

Sulfur hexafluoride is more stable in arcs (27) than fluorocarbons such as C2F, or refrigerants such as CCI2F2, but less stable than CF, BCl, or SiF. Exposed to 1000°C temperatures, SF decomposes to SOF2 and SF to the extent of 10 mol %. In spite of its decomposition, the dielectric strength... [Pg.241]

Health and Safety Factors. Sulfur hexafluoride is a nonflammable, relatively unreactive gas that has been described as physiologically inert (54). The current OSHA standard maximum allowable concentration for human exposure in air is 6000 mg/m (1000 ppm) TWA (55). The Underwriters Laboratories classification is Toxicity Group VI. It should be noted, however, that breakdown products of SF, produced by electrical decomposition of the gas, are toxic. If SF is exposed to electrical arcing, provision should be made to absorb the toxic components by passing the gas over activated alumina, soda-lime, or molecular sieves (qv) (56). [Pg.242]

Thiothionyl Fluoride and Difluorodisulfane. Thiothionyl fluoride [1686-09-9] S=SF2, and difluorodisulfane [13709-35-8] FSSF, are isomeric compounds which may be prepared as a mixture by the action of various metal fluorides on sulfur vapor or S2CI2 vapor. Chemically, the two isomers are very similar and extremely reactive. However, in the absence of catalytic agents and other reactive species, FSSF is stable for days at ordinary temperatures and S=SF2 may be heated to 250°C without significant decomposition (127). Physical properties of the two isomers are given in Table 6. The microwave spectmm of S=SF2 has been reported (130). [Pg.244]

Fluorosulfuric acid is stable to heat up to decomposition at about 900°C (13), where vapor-phase dissociation into hydrogen fluoride and sulfur trioxide probably occurs. Reviews of the chemistry and properties of fluorosulfuric acid have been pubUshed (14—16). [Pg.248]

Many problems have been reported (163), and the process has been abandoned because of the difficulty in handling sohds. Processes which are thought to have the best likelihood of success ate based on sulfuric acid decomposition. Three prominent cycles are based on this reaction the General Atomics iodine—sulfur cycle... [Pg.426]

Decomposition of Metal Chlorides by Acids. Two commercial processes employing the acidic decomposition of metal chlorides are the salt—sulfuric acid process and the Hargreaves process. Although these processes are declining in importance, they are used mainly because of the industrial demand for salt cake [7757-82-6] by the paper (qv) and glass (qv) industries. In the United States, however, Httle HCl is produced this way. [Pg.445]

C. Further warming to 65°C forms white iron sulfate monohydrate [17375-41 -6], FeSO H2O, which is stable to 300°C. Strong beating results in decomposition with loss of sulfur dioxide. Solutions of iron(II) sulfate reduce nitrate and nitrite to nitric oxide, whereupon the highly colored [Fe(H20) (N0)] ion is formed. This reaction is the basis of the brown ring text for the quaUtative deterrnination of nitrate or nitrite. [Pg.438]

Cmde diketene obtained from the dimeriza tion of ketene is dark brown and contains up to 10% higher ketene oligomers but can be used without further purification. In the cmde form, however, diketene has only limited stabHity. Therefore, especiaHy if it has to be stored for some time, the cmde diketene is distiHed to > 99.5% purity (124). The tarry distiHation residue, containing trike ten e (5) and other oligomers, tends to undergo violent Spontaneous decomposition and is neutralized immediately with water or a low alcohol. Ultrapure diketene (99.99%) can be obtained by crystallization (125,126). Diketene can be stabHized to some extent with agents such as alcohols and even smaH quantities of water [7732-18-5] (127), phenols, boron oxides, sulfur [7704-34-9] (128) and sulfate salts, eg, anhydrous copper sulfate [7758-98-7]. [Pg.479]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

Separation and Recovery of Rare-Earth Elements. Because rare-earth oxalates have low solubihty in acidic solutions, oxaUc acid is used for the separation and recovery of rare-earth elements (65). For the decomposition of rare-earth phosphate ores, such as mona ite and xenotime, a wet process using sulfuric acid has been widely employed. There is also a calcination process using alkaLine-earth compounds as a decomposition aid (66). In either process, rare-earth elements are recovered by the precipitation of oxalates, which are then converted to the corresponding oxides. [Pg.462]

Peroxomonosulfuric acid [7722-86-3] H2SO, when pure, forms colorless crystals that melt with decomposition at 45°C. One of its protons is strong, as ia sulfuric acid, but its other proton, which is on the peroxide group, is weak (pH = 9.4). Peroxomonosulfuric acid is a strong oxidi2iag agent ... [Pg.94]

Dialkyl peroxydicarboaates are used primarily as free-radical iaitiators for viayl monomer po1ymeri2ations (18,208). Dialkyl peroxydicarboaate decompositioas are accelerated by certaia metals, coaceatrated sulfuric acid, and amines (44). Violent decompositions can occur with neat or highly concentrated peroxides. As with most peroxides, they Hberate iodine from acidified iodides. In the presence of copper ions and suitable substrates, dialkyl peroxydicarbonates have been used to synthesi2e alkyl carbonates (44) ... [Pg.124]

Synthetic Iron Oxides. Iron oxide pigments have been prepared synthetically since the end of the seventeenth century. The first synthetic red iron oxide was obtained as a by-product of the production of sulfuric acid from iron sulfate containing slate. Later, iron oxide pigments were produced direcdy by the thermal decomposition of iron sulfates. In the 1990s, about 70% of all iron oxide pigments consumed are prepared synthetically. [Pg.11]

PPS dust should be treated as a nuisance particulate. The OSHA permissible exposure limit for respirable dust is 5 mg/m for dust containing no asbestos and less than 1% siUca. The principal decomposition products released during mol ding of PPS and their permissible exposure limits are given in Table 10. Sulfur dioxide and carbonyl sulfide are the most significant off-gases for production of mucous membrane irritation. [Pg.451]

Reduction. Just as aromatic amine oxides are resistant to the foregoing decomposition reactions, they are more resistant than ahphatic amine oxides to reduction. Ahphatic amine oxides are readily reduced to tertiary amines by sulfurous acid at room temperature in contrast, few aromatic amine oxides can be reduced under these conditions. The ahphatic amine oxides can also be reduced by catalytic hydrogenation (27), with 2inc in acid, or with staimous chloride (28). For the aromatic amine oxides, catalytic hydrogenation with Raney nickel is a fairly general means of deoxygenation (29). Iron in acetic acid (30), phosphoms trichloride (31), and titanium trichloride (32) are also widely used systems for deoxygenation of aromatic amine oxides. [Pg.190]

Ammonium sulfate [7783-20-2], (NH 2 U4, is a white, soluble, crystalline salt having a formula wt of 132.14. The crystals have a rhombic stmcture d is 1.769. An important factor in the crystallization of ammonium sulfate is the sensitivity of its crystal habit and size to the presence of other components in the crystallizing solution. If heated in a closed system ammonium sulfate melts at 513 2° C (14) if heated in an open system, the salt begins to decompose at 100°C, giving ammonia and ammonium bisulfate [7803-63-6], NH HSO, which melts at 146.9°C. Above 300°C, decomposition becomes more extensive giving sulfur dioxide, sulfur trioxide, water, and nitrogen, in addition to ammonia. [Pg.367]


See other pages where Sulfur decomposition is mentioned: [Pg.317]    [Pg.96]    [Pg.116]    [Pg.317]    [Pg.96]    [Pg.116]    [Pg.241]    [Pg.222]    [Pg.137]    [Pg.153]    [Pg.508]    [Pg.224]    [Pg.304]    [Pg.385]    [Pg.65]    [Pg.480]    [Pg.356]    [Pg.515]    [Pg.251]    [Pg.11]    [Pg.44]    [Pg.346]    [Pg.458]    [Pg.95]    [Pg.103]    [Pg.115]    [Pg.116]    [Pg.119]    [Pg.313]    [Pg.8]    [Pg.116]   
See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.120 , Pg.123 ]




SEARCH



Ammonia-sulfur dioxide solution decomposition

Cleaning, gas spent sulfuric acid decomposition furnace

Decomposition ammonia-sulfur dioxide

Decomposition of Sugar Using Sulfuric Acid

Flowsheets spent sulfuric acid decomposition furnace

Hydroperoxide decomposition sulfur compounds

Spent sulfuric acid decomposition

Spent sulfuric acid decomposition furnace

Sulfur dioxide decomposition

Sulfur-iodine cycle decomposition

Sulfur-iodine cycle sulfuric acid decomposition

Thermal decomposition sulfur

© 2024 chempedia.info