Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Star polymer architecture

Several reasons have been proposed to account for this difference between stars and micelles, which can be thought of as a peculiarity of the star polymer architecture. The most important are the fluctuations of the outer blobs of the stars with amplitude exceeding the linderman criterion limit, the weak metastable state of the stars, and the difference between stars and nricelles in relation to the presence of a well-defined, solid core in the latter. Indeed, the difference in core size and shape is important and can explain why star-like nricelles could... [Pg.324]

More recent examples include end-functionalized multiarmed poly(vinyl ether) (44), MVE/styrene block copolymers (45), and star-shaped polymers (46—48). With this remarkable control over polymer architecture, the growth of future commercial appHcations seems entirely likely. [Pg.516]

Block copolymer chemistry and architecture is well described in polymer textbooks and monographs [40]. The block copolymers of PSA interest consist of anionically polymerized styrene-isoprene or styrene-butadiene diblocks usually terminating with a second styrene block to form an SIS or SBS triblock, or terminating at a central nucleus to form a radial or star polymer (SI) . Representative structures are shown in Fig. 5. For most PSA formulations the softer SIS is preferred over SBS. In many respects, SIS may be treated as a thermoplastic, thermoprocessible natural rubber with a somewhat higher modulus due to filler effect of the polystyrene fraction. Two longer reviews [41,42] of styrenic block copolymer PSAs have been published. [Pg.479]

As discussed in Section 7.3, conventional free radical polymerization is a widely used technique that is relatively easy to employ. However, it does have its limitations. It is often difficult to obtain predetermined polymer architectures with precise and narrow molecular weight distributions. Transition metal-mediated living radical polymerization is a recently developed method that has been developed to overcome these limitations [53, 54]. It permits the synthesis of polymers with varied architectures (for example, blocks, stars, and combs) and with predetermined end groups (e.g., rotaxanes, biomolecules, and dyes). [Pg.329]

The use of mono-, di- and multifunctional initiators provides scope for designing polymer architectures. The use of 14, 18 and 19 in the production of block or star polymers has been demonstrated.41 4445 Homopolymers of 20 or copolymers of 20 with S or MMA have been successfully used in photoinitiated... [Pg.464]

Several basic approaches to star polymer synthesis leading to architectures as... [Pg.548]

Monomers of die type Aa B. are used in step-growth polymerization to produce a variety of polymer architectures, including stars, dendrimers, and hyperbranched polymers.26 28 The unique architecture imparts properties distinctly different from linear polymers of similar compositions. These materials are finding applications in areas such as resin modification, micelles and encapsulation, liquid crystals, pharmaceuticals, catalysis, electroluminescent devices, and analytical chemistry. [Pg.8]

In a seminal and seemingly forgotten paper, Burchard et al. " discussed the analysis of various polymer architectures based on integrated light scattering (LS) and quasielastic light scattering (QELS). They considered mono- and polydisperse linear and star-branched polymers with/number of arms ( rays ), and random polycondensates of Af or ABC type (identical or different... [Pg.205]

The molecular characterization of a polymeric material is a crucial step in elucidating the relationship between its properties (e.g., mechanical, thermal), its chemical structure, and its morphology. As a matter of fact, the development of a new product stems invariably from a good knowledge of the above relationships. Characterization of polymers is often a difficult task because polymers display a variety of architectures, including linear, cyclic, and branched chains, dendrimers, and star polymers with different numbers of arms. [Pg.299]

The synthesis of well-defined LCB polymers have progressed considerably beyond the original star polymers prepared by anionic polymerization between 1970 and 1980. Characterization of these new polymers has often been limited to NMR and SEC analysis. The physical properties of these polymers in dilute solution and in the bulk merit attention, especially in the case of completely new architectures such as the dendritic polymers. Many other branched polymers have been prepared, e.g. rigid polymers like nylon [123], polyimide [124] poly(aspartite) [125] and branched poly(thiophene) [126], There seems to be ample room for further development via the use of dendrimers and hyperbran-... [Pg.87]

Freed et al. [42,43], among others [44,45] have performed RG perturbation calculations of conformational properties of star chains. The results are mainly valid for low functionality stars. A general conclusion of these calculations is that the EV dependence of the mean size can be expressed as the contribution of two terms. One of them contains much of the chain length dependence but does not depend on the polymer architecture. The other term changes with different architectures but varies weakly with EV. Kosmas et al. [5] have also performed similar perturbation calculations for combs with branching points of different functionalities (that they denoted as brushes). Ohno and Binder [46] also employed RG calculations to evaluate the form of the bead density and center-to-end distance distribution of stars in the bulk and adsorbed in a surface. These calculations are consistent with their scaling theory [27]. [Pg.50]

The recognition of the two fundamental mechanisms of reptation and arm fluctuation for linear and branched entangled polymers respectively allows theoretical treatment of the hnear rheology and dynamics of more complex polymers. The essential tool is the renormahsation of the dynamics on a hierarchy of timescales, as for the case of star polymers. It is important to stress that experimental checks on well-controlled architectures of higher complexity are still very few due to the difficulty of synthesis, but the case of comb-polymers is an example where good data exists [7]. [Pg.226]

A number of different types of copolymers are possible with ATRP—statistical (random), gradient, block, and graft copolymers [Matyjaszewski, 2001]. Other polymer architectures are also possible—hyperbranched, star, and brush polymers, and functionalized polymers. Statistical and gradient copolymers are discussed in Chap. 6. Functionalized polymers are discussed in Sec. 3-16b. [Pg.322]

Statistical, gradient, and block copolymers as well as other polymer architectures (graft, star, comb, hyperbranched) can be synthesized by NMP following the approaches described for ATRP (Secs. 3-15b-4, 3-15b-5) [Hawker et al., 2001]. Block copolymers can be synthesized via NMP using the one-pot sequential or isolated macromonomer methods. The order of addition of monomer is often important, such as styrene first for styrene-isoprene, acrylate first for acrylate-styrene and acrylate-isoprene [Benoit et al., 2000a,b Tang et al., 2003]. Different methods are available to produce block copolymers in which the two blocks are formed by different polymerization mechanisms ... [Pg.327]

Among the two ionic polymerization techniques mentioned above, a living anionic polymerization should show the best possible control of polymer architecture and composition. Mono dispersed homopolymers, complex-block, graft, star, and miktoarm architectures have been accessible primarily by anionic polymerization methods [22]. They have been used to grow polymer brushes from various small particles such as silica gels graphite,carbon black, and flat surfaces [23-26]. Recent results have been reported on living anionic polymerizations on clay [27] and silica nanoparticles [28,29]. [Pg.113]

The molecular architecture of a polyphosphazene has a profound influence on properties. For example, linear and tri-star trifluoroethoxy-substituted polymers with the same molecular weight (1.2 x 104 or higher) have strikingly different properties.138 The linear polymers are white, fibrous materials that readily form films and fibers, whereas the tri-arm star polymers are viscous gums. One is crystalline and the other is amorphous. Cyclolinear polymers are usually soluble and flexible. Cyclomatrix polymers are insoluble and rigid. Linear polymers can be crystalline, but graft or comb polymers are usually amorphous. [Pg.107]

There are many polymer architectures beyond chains such as stars, combs, and brushes. An example of a star-type oligophenylene is structure 100.276 It can be described as possessing three oli-... [Pg.25]

Asymmetric star polymers are megamolecules [1] emanating from a central core. In contrast to the symmetric stars very little was known, until recently, about the properties of the asymmetric stars. This was due to the difficulties associated with the synthesis of well-defined architectures of this class of polymeric materials. The synthesis, solution and bulk properties, experimental and theoretical, of the following categories of asymmetric stars will be considered in this review ... [Pg.75]

Much experimental work has appeared in the literature concerning the microphase separation of miktoarm star polymers. The issue of interest is the influence of the branched architectures on the microdomain morphology and on the static and dynamic characteristics of the order-disorder transition, the ultimate goal being the understanding of the structure-properties relation for these complex materials in order to design polymers for special applications. [Pg.116]


See other pages where Star polymer architecture is mentioned: [Pg.203]    [Pg.203]    [Pg.107]    [Pg.714]    [Pg.140]    [Pg.328]    [Pg.71]    [Pg.72]    [Pg.73]    [Pg.75]    [Pg.76]    [Pg.78]    [Pg.81]    [Pg.172]    [Pg.41]    [Pg.195]    [Pg.203]    [Pg.178]    [Pg.301]    [Pg.3]    [Pg.11]    [Pg.184]    [Pg.93]    [Pg.416]    [Pg.187]    [Pg.145]    [Pg.4]    [Pg.124]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Polymer architectural

Star architecture

Star polymers

© 2024 chempedia.info