Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent-extraction industrial applications

Plant carotenoids are still extracted at laboratory and industrial scales with solvent mixtnres of ethanol and ethyl acetate, bnt solvent extraction always bears the risk of toxic residnes in the extracts and this limits their use in large production applications in the food and pharmaceutical industries. [Pg.310]

Applications The broad industrial analytical applicability of microwave heating was mentioned before (see Section 3.4.4.2). The chemical industry requires extractions of additives (antioxidants, colorants, and slip agents) from plastic resins or vulcanised products. So far there have been relatively few publications on microwave-assisted solvent extraction from polymers (Table 3.5). As may be seen from Tables 3.27 and 3.28, most MAE work has concerned polyolefins. [Pg.107]

The book is directed to third- to fourth-year undergraduate and postgraduate chemistry and chemical engineering students, as well as to researchers and developers in the chemical industry. The book is also intended for chemical engineers in industry who either have not kept up with modern developments or are considering use of this technique, as well as engineers who already are using this technique but desire to understand it better. Furthermore, the book should be useful to researchers in solvent extraction who wish to learn about its applications in areas other than their own. [Pg.4]

The first edition of this book was published more than 10 years ago. Since then four large international conferences have summarized the latest developments in the field of solvent extraction. We have tried to incorporate the latest achievements of a fundamental type in this text, for instance, new types of solvent matrices and industrial applications, without burdening the text with new organic extractants or solvent combinations, which appear almost daily in the specialist literature. As far as possible, we have also rationalized the earlier text, concentrating on or removing outdated information. In doing so we have added new contributors. We therefore hope that this text will be met with the same enthusiasm as the first edition. [Pg.4]

After an introduction (Chapter 1), the following five chapters (Chapters 2-6) present the physical principles and formal expressions used in solvent extraction. They are followed by eight chapters (Chapters 7-14) of various industrial applications and two concluding chapters (Chapters 15 and 16) indicating the research frontiers and future developments in technology. [Pg.4]

None of the authors of this book is an expert in all the aspects of solvent extraction, nor do we believe that any of our readers will try to become one. This book is, therefore, written by authors from various disciplines of chemistry and by chemical engineers. The scientific level of the text only requires basic chemistry training, but not on a Ph.D. level, though the text may be quite useful for extra reading even at that level. The text is divided in two parts. The first part covers the fundamental chemistry of the solvent extraction process and the second part the techniques for its use in industry with a large number of applications. In this introductory chapter we try to put solvent extraction in its chemical context, historical as well as modem. The last two chapters describe the most recent applications and theoretical developments. [Pg.12]

The three main separation processes between solid, gas, and liquid have long been known, while solvent extraction is a relatively new separation technique, as is described in the brief historical review in next two sections. Nevertheless, because all solutes (organic as well as inorganic) can be made more or less soluble in aqueous and organic phases, the number of applications of solvent extraction is almost limitless. Since large-scale industrial solvent extraction is a continnons process (in contrast to laboratory batch processes) and can be... [Pg.14]

The industrial use of solvent extraction of inorganic compounds grew out of the analytical work. As both areas, analytical as well as industrial, needed both better extractants and an understanding of the reaction steps in the solutions in order to optimize the applications, theoretical interpretations of the molecular reactions in the solutions became a necessity, as will be described in later chapters. [Pg.20]

In the early analytical applications of solvent extraction, optimal extraction or separation conditions were obtained empirically. This was unsatisfactory and general mathematical descriptions were developed by a number of researchers in many countries. This was especially important for large-scale industrial use and is an activity that continues today almost entirely with computers. [Pg.24]

The industrial application of solvent extraction is a mature technique, and it is now possible to move from laboratory experiments on a new extraction system to full industrial practice with little technological risk. There is a sufficient variety of large-scale equipment available to cope with most problems encountered in application, although much of the equipment remains rather massive. Attempts to miniaturize, for instance, by using centrifugal forces to mix and separate phases, still has to be developed further. [Pg.27]

The principle of solvent extraction—the distribution of chemical species between two immiscible liquid phases—has been applied to many areas of chemistry. A typical one is liquid partition chromatography, where the principle of solvent extraction provides the most efficient separation process available to organic chemistry today its huge application has become a field (and an industry ) of its own. The design of ion selective electrodes is another application of the solvent extraction principle it also has become an independent field. Both these applications are only briefly touched upon in the chapter of this book on analytical applications (Chapter 14), as we consider them outside the scope of... [Pg.29]

The second part deals with applications of solvent extraction in industry, and begins with a general chapter (Chapter 7) that involves both equipment, flowsheet development, economic factors, and environmental aspects. Chapter 8 is concerned with fundamental engineering concepts for multistage extraction. Chapter 9 describes contactor design. It is followed by the industrial extraction of organic and biochemical compounds for purification and pharmaceutical uses (Chapter 10), recovery of metals for industrial production (Chapter 11), applications in the nuclear fuel cycle (Chapter 12), and recycling or waste treatment (Chapter 14). Analytical applications are briefly summarized in Chapter 13. The last chapters, Chapters 15 and 16, describe some newer developments in which the principle of solvent extraction has or may come into use, and theoretical developments. [Pg.31]

The theory of solvent extraction was considered in Chapter 1, and Chapter 7 covered the application of liquid-liquid extraction in industry. The principles underlying the design of industrial applications are addressed in this chapter. [Pg.342]

There followed a brief discussion of equipment for carrying out solvent extraction in industrial practice, both by stagewise and differential contact. Some of the first principles for the design of differential contactors were outlined and the part played by the efficiency of extraction in continuous equipment was discussed. Finally there was an outline of methods for the control of solvent loss which forms probably the most important environmental aspect of the application of solvent extraction. [Pg.369]

The separation of organic mixtures into groups of components of similar chemical type was one of the earliest applications of solvent extraction. In this chapter the term solvent is used to define the extractant phase that may contain either an extractant in a diluent or an organic compound that can itself act as an extractant. Using this technique, a solvent that preferentially dissolves aromatic compounds can be used to remove aromatics from kerosene to produce a better quality fuel. In the same way, solvent extraction can be used to produce high-purity aromatic extracts from catalytic reformates, aromatics that are essentially raw materials in the production of products such as polystyrene, nylon, and Terylene. These features have made solvent extraction a standard technique in the oil-refining and petrochemical industries. The extraction of organic compounds, however, is not confined to these industries. Other examples in this chapter include the production of pharmaceuticals and environmental processes. [Pg.418]

All the novel separation techniques discussed in this chapter offer some advantages over conventional solvent extraction for particular types of feed, such as dilute solutions and the separation of biomolecules. Some of them, such as the emulsion liquid membrane and nondispersive solvent extraction, have been investigated at pilot plant scale and have shown good potential for industrial application. However, despite their advantages, many industries are slow to take up novel approaches to solvent extraction unless substantial economic advantages can be gained. Nevertheless, in the future it is probable that some of these techniques will be taken up at full scale in industry. [Pg.675]

The pesticide industry generates many concentrated wastes that are considered hazardous wastes. These wastes must be detoxified, pretreated, or disposed of safely in approved facilities. Incineration is a common waste destruction method. Deep well injection is a common disposal method. Other technologies such as wet air oxidation, solvent extraction, molten-salt combustion, and microwave plasma destmction have been investigated for pesticide waste applications. [Pg.536]

Development of solvent extraction processes in the petroleum industry and theoretical aspects of solvent extraction are reviewed. Six extraction processes which have received industrial acceptance are described and performance characteristics of furfural, phenol, and Duosol processes are compared. Data are presented to demonstrate the applicability of adsorption analyses for stock evaluation and prediction of commercial extraction yields. Correlations for predicting solvent requirements and layer compositions and process design and engineering considerations are included. The desirability of further fundamental work to facilitate design calculations from physical data is suggested. [Pg.179]


See other pages where Solvent-extraction industrial applications is mentioned: [Pg.394]    [Pg.394]    [Pg.383]    [Pg.43]    [Pg.2968]    [Pg.45]    [Pg.257]    [Pg.1623]    [Pg.325]    [Pg.334]    [Pg.542]    [Pg.10]    [Pg.130]    [Pg.511]    [Pg.104]    [Pg.1323]    [Pg.104]    [Pg.185]    [Pg.78]    [Pg.470]    [Pg.123]    [Pg.223]    [Pg.232]    [Pg.3]    [Pg.20]    [Pg.26]    [Pg.30]    [Pg.509]    [Pg.509]    [Pg.230]    [Pg.109]    [Pg.170]    [Pg.366]   
See also in sourсe #XX -- [ Pg.382 ]




SEARCH



Solvent extraction, applications

© 2024 chempedia.info