Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubilization Enhancement

Kumar, A., Uddin, H., Kunieda, H., Furukawa, H. and Harashima, A. (2001) Solubilization enhancing effect of A-B-type silicone surfactants in microemulsions. /. Dispersion Sci. Technol, 22(2-3), 245-53. [Pg.201]

API Studies Utilizing HPMC as a Solubilization Enhancing Polymer... [Pg.522]

R. NAGARAJAN is currently Assistant Professor of Chemical Engineering at the Pennsylvania State University. He received his Ph.D. degree in 1979 from the State Unviersity of New York at Buffalo. His research interests focus on surfactants, their mechanism of action and their applications. He has published more than 30 papers in the areas of thermodynamics of micelles, vesicles, solubilization, enhanced oil recovery and surfactant-polymer interactions. [Pg.446]

Calculations usirig this value afford a partition coefficient for 5.2 of 96 and a micellar second-order rate constant of 0.21 M" s" . This partition coefficient is higher than the corresponding values for SDS micelles and CTAB micelles given in Table 5.2. This trend is in agreement with literature data, that indicate that Cu(DS)2 micelles are able to solubilize 1.5 times as much benzene as SDS micelles . Most likely this enhanced solubilisation is a result of the higher counterion binding of Cu(DS)2... [Pg.144]

Petroleum sulfonates are widely used as solubilizers, dispersants (qv), emulsifiers, and corrosion inhibitors (see Corrosion and corrosion inhibitors). More recentiy, they have emerged as the principal surfactant associated with expanding operations in enhanced oil recovery (66). Alkaline-earth salts of petroleum sulfonates are used in large volumes as additives in lubricating fluids for sludge dispersion, detergency, corrosion inhibition, and micellar solubilization of water. The chemistry and properties of petroleum sulfonates have been described (67,68). Principal U.S. manufacturers include Exxon and Shell, which produce natural petroleum sulfonates, and Pilot, which produces synthetics. [Pg.241]

Developing agents must also be soluble in the aqueous alkaline processing solutions. Typically such solutions are maintained at about pH 10 by the presence of a carbonate buffer. Other buffers used include borate and, less frequendy, phosphate. Developer solubiUty can be enhanced by the presence of hydroxyl or sulfonamide groups, usually in the A/-alkyl substituent. The solubilization also serves to reduce developer allergenicity by reducing partitioning into the lipophilic phase of the skin (46). [Pg.473]

Microemulsions or solubilized or transparent systems are very important ia the marketing of cosmetic products to enhance consumer appeal (32,41). As a rule, large quantities of hydrophilic surfactants are required to effect solubilization. Alternatively, a combination of a solvent and a surfactant can provide a practical solution. In modem clear mouthwash preparations, for example, the flavoring oils are solubilized in part by the solvent (alcohol) and in part by the surfactants. The nature of solubilized systems is not clear. Under normal circumstances, microemulsions are stable and form spontaneously. Formation of a microemulsion requires Httle or no agitation. Microemulsions may become cloudy on beating or cooling, but clarity at intermediate temperatures is restored automatically. [Pg.294]

Powerful solvents such as dimethyl sulfoxide (common laser dye solvent) and solubilizing substituents (K" and R " = sulfoalkyl in stmcture 32) may enhance the transport of dyes in solution through skin and other membranes. Reference 88 (on laser dye solutions and toxicity) is recommended to researchers working with dye solutions. Other dyes, such as Indocyanine Green, attain useful properties (blood tracer dye) as a result of having solubilizing substituents in their stmcture. [Pg.401]

Elevated temperatures may be used with SynChropak GPC or CATSEC supports if necessary for solubilization, speed, or reduction of band spreading. Such conditions are not recommended for routine analyses, however, because column degradation is enhanced as temperatures are raised. [Pg.323]

Dissolution of 5 could be enhanced in H2O by solid dispersion systems with urea and mannitol (97MI27). A method for solubilizing 5 and 6 at near physiological pH was patented (98EUP856316). Solubility characteristics of 5 was investigated in an in vitro tear model (98MI24). [Pg.264]

Ultrafiltration of micellar solutions combines the high permeate flows commonly found in ultrafiltration systems with the possibility of removing molecules independent of their size, since micelles can specifically solubilize or bind low molecular weight components. Characteristics of this separation technique, known as micellar-enhanced ultrafiltration (MEUF), are that micelles bind specific compounds and subsequent ultrafiltration separates the surrounding aqueous phase from the micelles [70]. The pore size of the UF membrane must be chosen such, that the micelles are retained but the unbound components can pass the membrane freely. Alternatively, proteins such as BSA have been used in stead of micelles to obtain similar enan-tioselective aggregates [71]. [Pg.145]

The formation of a microphase structure can be sensitively detected by using hydrophobic fluorescent probes. Hydrophobic microdomains tend to solubilize hydrophobic small molecules present together in aqueous solution. For example, diphenylhexatriene (DHT) is hydrophobically bound to the St aggregates in ASt-x in aqueous solution and, as a result, the fluorescence intensity is greatly enhanced. Figure 9 shows the fluorescence intensity of DHT in the presence of ASt-x relative to the intensity in its absence (I/I0) as a function of the ASt-x concentration [29],... [Pg.67]

Solubilizing activity are also used in enhanced oil recovery. Tar and extremely viscous hydrocarbons are recovered by the injection of an aqueous solution of an anionic orthophosphate ester surfactant into a petroleum formation, retaining the surfactant in the formation for about 24 h, and displacing the solubilized hydrocarbons toward a recovery well. The surfactant forms an oil microemulsion with the hydrocarbons in the formation. An anionic monoorthophosphate ester surfactant which is a free acid of an organic phosphate ester was dissolved in water. The input of surfactant solution was 2-25% of the pore volume of the formation [250]. To produce a concentrate for the manufacture... [Pg.606]

Soluble organic solvents have often been used as cosolvents to solubilize miscible organic substrates. Since organic compounds including solvents are possibly incorporated inside of the enzyme, they may affect the stereoselectivity of enzymatic reactions. For example, dimethyl sulfoxide (DMSO) (10%) enhance not only chemical yield but also enantioselectivity of yeast reduction. Thus, the poor yield of 23% with 80% ee was increased to 65% yield with >99% ee (Figure 8.20) [17]. [Pg.209]

Cyclodextrins can solubilize hydrophobic molecules in aqueous media through complex formation (5-8). A nonpolar species prefers the protective environment of the CDx cavity to the hulk aqueous solvent. In addition, cyclodextrins create a degree of structural rigidity and molecular organization for the included species. As a result of these characteristics, these macrocycles are used in studies of fluorescence and phosphorescence enhancement (9-11), stereoselective catalysis (.12,13), and reverse-phase chromatographic separations of structurally similar molecules (14,15). These same complexing abilities make cyclodextrins useful in solvent extraction. [Pg.170]

Even entrapment of entire cells within reversed micelles without loss of their functionality has been achieved. For example, mitochondria and bacteria (Actinobacter cal-coaceticus, Escherichia coli, Corynebacterium equi) have been successfully solubilized in a microemulsion consisting of isopropyl pahnitate, polyoxyethylene sorbitan trioleate [162], Enhanced hydrogen photoproduction by the bacterium Rhodopseudomonas sphaeroides or by the coupled system Halobacterium halobium and chloroplasts organelles entrapped inside the aqueous core of reversed micelles with respect to the same cells suspended in normal aqueous medium has been reported [183,184],... [Pg.489]

By solubilizing very viscous aqueous solutions of polyethylene glycol in AOT/iso-octane solutions, it has been observed that the polymer leads to a decrease in the intermi-cellar interactions and enhances the stability of very large droplets with R values ranging from 55 to 150. The largest reversed micelle may contain up to 200 polymer molecules [238],... [Pg.494]

For lactic acid fermentation of bean curd refuse with simultaneous saccharification, it is found that the pretreatment of the substrate using 0.1 or 0.2 mol/l HCl aqueous solution with heating at niTi for 30 min efficiently solubilized the raw material and significantly enhanced the enzymatic saccharification followed by the lactic acid fermentation. The amount of initial load of bean curd refiise in dried state could be increased up to 75 g/1 in a batch fermentation, and the finally attained lactic acid yield and its concentration were as high as 87.0% and 45.8 g/1, respectively. [Pg.136]

Spernath, A. et al.. Food-grade microemnlsions based on nonionic emulsifiers media to enhance lycopene solubilization, J. Agric. Food Chem., 50, 6917, 2002. [Pg.326]

Thermostable pectinesterases (TSPE), operationally defined as activity that survives 5 min at 70°C, contribute most to cloud loss in juices at low temperatures and juice pH (26). The percentage of total activity that is thermostable is highly variable and differs in kinetic properties, (22, 26), ease of solubilization (28, 29), stability to low pH (25) and stability to freeze-thaw cycles (23). Some of the variability in reported total PE and TSPE may be related to limitations of current methods to quantify activity. Any processing treatment or assay condition that increases cell wall breakdown or release PE from a pectin complex would enhance detection of total and TS-PE activity. Commercially, PE is inactivated by pasteurization in a plate heat exchanger or during concentration in the TASTE evaporator. [Pg.475]


See other pages where Solubilization Enhancement is mentioned: [Pg.468]    [Pg.18]    [Pg.120]    [Pg.152]    [Pg.218]    [Pg.566]    [Pg.590]    [Pg.261]    [Pg.37]    [Pg.468]    [Pg.18]    [Pg.120]    [Pg.152]    [Pg.218]    [Pg.566]    [Pg.590]    [Pg.261]    [Pg.37]    [Pg.75]    [Pg.32]    [Pg.279]    [Pg.53]    [Pg.70]    [Pg.2061]    [Pg.770]    [Pg.7]    [Pg.415]    [Pg.606]    [Pg.372]    [Pg.483]    [Pg.484]    [Pg.209]    [Pg.220]    [Pg.26]    [Pg.230]    [Pg.176]    [Pg.213]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



© 2024 chempedia.info