Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis stereoselectivity

These proceedings from the 19 th Conference represent the work of over 150 scientists from fourteen countries. The proceedings are organized into the following topics immobilized and supported catalysts, practical aspects of catalysis, solid acid and base catalysis, heterogeneous catalysis and commercial processes, Raney-type and base metal catalysis, stereoselective catalysis, and hydrogenation and amination. [Pg.8]

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

Stereoselective and chemoselective semihydrogenation of the internal alkyne 208 to the ew-alkene 210 is achieved by the Pd-catalyzed reaction of some hydride sources. Tetramethyldihydrosiloxane (TMDHS) (209) i.s used in the presence of AcOH[116]. (EtO)3SiH in aqueous THF is also effective for the reduction of alkynes to di-alkenes[l 17], Semihydrogenation to the d.v-alkene 211 is possible also with triethylammonium formate with Pd on carbon[118]. Good yields and high cis selectivity are obtained by catalysis with Pd2fdba)3-Bu3P[119],... [Pg.497]

This catalytic cycle is related to some stereoselective industrial catalysis. [Pg.170]

Stereoselectivity in the condensation reaction of 2-arylethylamines with carbonyl compounds to give 1,2,3,4-tetrahydroisoquinoline derivatives was somewhat dependent on whether acid catalysis or superacid catalysis was invoked. Particularly in the cases of 2-alkyl-N-benzylidene-2-phenethylamines, an enhanced stereoselectivity was observed with trifluorosulfonic acid (TFSA) as compared with the weaker acid, trifluoroacetic acid (TFA). Compound 43 was cyclized in the presence of TFA to give modest to good transicis product ratios. The analogous compound 44 was cyclized in the presence of TFSA to give slightly improved transicis product ratios. [Pg.475]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

Double Michael addiQoas of rutro compounds beanng tethered acidic carbons to 3-butyn-3-one under NaH catalysis give nitrocyclohexanes v/ith high stereoselectivity The products are transformed into rrruii -fused bicyclic compounds via the Dickmarm reaction on treatment with base fEq 4 139 ... [Pg.114]

T. Hartmann, E. Schwabe, T. Scheper, Enzyme catalysis in supercritical fluids in R. Patel, Stereoselective Biocatalysis, Marcel Dekker, 2000, 799. [Pg.346]

Keller, H. J., and Soos,-Z. G. Solid Charge-Transfer Complexes of Phenazines. 127, 169-216 (1985). Kellogg, R. M. Bioorganic Modelling — Stereoselective Reactions with Chiral Neutral Ligand Complexes as Model Systems for Enzyme Catalysis. 101, 111-145 (1982). [Pg.262]

Bioorganic modelling. Stereoselective reactions with chiral neutral ligand complexes as model systems for enzyme catalysis. R. M. Kellogg, Top. Curr. Chem., 1982,101,111-145 (93). [Pg.61]

Epoxidations of chiral allenamides lead to chiral nitrogen-stabilized oxyallyl catioins that undergo highly stereoselective (4 + 3) cycloaddition reactions with electron-rich dienes.6 These are the first examples of epoxidations of allenes, and the first examples of chiral nitrogen-stabilized oxyallyl cations. Further elaboration of the cycloadducts leads to interesting chiral amino alcohols that can be useful as ligands in asymmetric catalysis (Scheme 2). [Pg.79]

The complex obtained from commercially available chiral a-amino acids (AA) with Cu + ion induces asymmetry in the Diels-Alder reaction of 31 (R = H) with 32. By using 10% Cu(II)-AA (AA = L-abrine) the cycloaddition occurs e/iJo-stereoselectively in 48 h at 0°C with high yield and with acceptable enantioselectivity ee = 1A%). This is the first example of enantioselective Lewis-acid catalysis of an organic reaction in water [9b]. [Pg.266]

Agbossou E., Carpentier J. E. Hapiot E., Suisse I., Mortreux A. The Aminophos-phine-Phosphinites and Related Ligands Synthesis, Coordination Chemistry and Enantioselective Catalysis Coord. Chem. Rev. 1998 I78-I80 1615-1645 Keywords stereoselective Diels-Alder reaction catalysts, aminophosphine-phosphinites, enantioselective catalysts... [Pg.307]

Using FmA catalysis and protected 4-hydroxybutanal, compound (97) has been stereoselectively prepared as a synthetic equivalent to the C-3-C-9 fragment of (-F)-aspicillin, a lichen macrolactone (Figure 10.35) [160]. Similarly, FruA mediated stereoselective addition of (25) to a suitably crafted aldehyde precursor (98) served as the key step in the synthesis of the noncarbohydrate , skipped polyol C-9-C-16 chain fragment (99) of the macrolide antibiotic pentamycin [161,162]. [Pg.301]

Figure 10.35 Stereoselective generation of chiral precursors for the synthesis of the lichen macrolactone (+)-aspicillin and the macrolide antibiotic pentamycin using FruA catalysis. Figure 10.35 Stereoselective generation of chiral precursors for the synthesis of the lichen macrolactone (+)-aspicillin and the macrolide antibiotic pentamycin using FruA catalysis.
Figure 10.41 Natural aldol reaction catalyzed by RibA, acceptance of nonnatural aldol donors, and azasugar precursors prepared by stereoselective RibA catalysis. Figure 10.41 Natural aldol reaction catalyzed by RibA, acceptance of nonnatural aldol donors, and azasugar precursors prepared by stereoselective RibA catalysis.
Figure 10.46 Application of ThrA catalysis for the stereoselective synthesis of dihydroxyprolines from glyceraldehyde, and an adenylamino acid for RNA mimics (a). ThrA based preparation of precursors to the immunosuppressive lipid mycestericin and the antibiotic thiamphenicol (b). Figure 10.46 Application of ThrA catalysis for the stereoselective synthesis of dihydroxyprolines from glyceraldehyde, and an adenylamino acid for RNA mimics (a). ThrA based preparation of precursors to the immunosuppressive lipid mycestericin and the antibiotic thiamphenicol (b).
Sinnott, M. (1998) Comprehensive Biological Catalysis, Academic Press, San Diego. Fessner, W.-D. (1998) Biocatalysis - From Discovery to Application Topics in Current Chemistry, Vol. 200, Springer, Heidelberg. Patel, R.N. (2000) Stereoselective Biocatalysis, Marcel Dekker Inc,... [Pg.311]

Cyclodextrins can solubilize hydrophobic molecules in aqueous media through complex formation (5-8). A nonpolar species prefers the protective environment of the CDx cavity to the hulk aqueous solvent. In addition, cyclodextrins create a degree of structural rigidity and molecular organization for the included species. As a result of these characteristics, these macrocycles are used in studies of fluorescence and phosphorescence enhancement (9-11), stereoselective catalysis (.12,13), and reverse-phase chromatographic separations of structurally similar molecules (14,15). These same complexing abilities make cyclodextrins useful in solvent extraction. [Pg.170]

R. Noyori and T. Ohkuma, Asymmetric Catalysis by Architectural and Functional Molecular Engineering Practical Chemo- and Stereoselective Hydrogenation of Ketones , Angew. Chem. Int. Ed. Engl, 2001, 40, 40. [Pg.129]

Bongers, N. and Krause, N. (2008) Golden Opportunities in Stereoselective Catalysis. Angewcmdte Chemie International Edition, 47, 2178—2181. [Pg.237]


See other pages where Catalysis stereoselectivity is mentioned: [Pg.414]    [Pg.187]    [Pg.119]    [Pg.414]    [Pg.187]    [Pg.119]    [Pg.2594]    [Pg.403]    [Pg.519]    [Pg.134]    [Pg.146]    [Pg.208]    [Pg.304]    [Pg.161]    [Pg.13]    [Pg.78]    [Pg.79]    [Pg.157]    [Pg.48]    [Pg.59]    [Pg.65]    [Pg.162]    [Pg.275]    [Pg.281]    [Pg.48]    [Pg.3]    [Pg.31]    [Pg.114]    [Pg.95]    [Pg.55]   
See also in sourсe #XX -- [ Pg.206 ]




SEARCH



Catalysis stereoselective

Catalysis stereoselective

Dendrimers as Platforms for Stereoselective Catalysis

Homogeneous catalysis stereoselective polymerization

Sequential Catalysis for the Stereoselective Synthesis of Complex Polyketides

Stereoselective reactions, catalysis

Stereoselective synthesis catalysis

Stereoselective synthesis enamine catalysis

Stereoselective synthesis iminium catalysis

Stereoselectivity antibody catalysis

Stereoselectivity enamine catalysis

© 2024 chempedia.info