Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yeast reduction

The thioredoxins appear to have a highly specific relationship with the enzyme carrying out ttieir reduction. Yeast thioredoxin for example is not reduced by the thioredoxin reductase from E. coli. In contrast reduced thioredoxins may donate electrons to a variety of acceptors. Reduced thioredoxin is a good general disulphide reductant. In combination with its reductase a disulphide reductase system is formed which is capable of reducing lipoic acid, oxidized glutathione and other similar structures. In these cases the thioredoxin-disulphide redox system does not appear to require additional enzymatic components. [Pg.95]

Dihydroxybutane. -butylene glycol, CH3CH(0H)CH2CH20H, b.p. 204°C. Manufactured by reduction of aldol or by the action of yeast on aldol. Used to prepare butadiene. Used in brake fluids, in gelling agents and as an intermediate in plasticizers. [Pg.72]

H02C(CH2)2C02H. Colourless prisms m.p. 182 C, b.p. 235°C. Occurs in amber, algae, lichens, sugar cane, beets and other plants, and is formed during the fermentation of sugar, tartrates, malates and other substances by a variety of yeasts, moulds and bacteria. Manufactured by the catalytic reduction of maleic acid or by heating 1,2-dicyanoethane with acids or alkalis. Forms an anhydride when heated at 235°C. Forms both acid and neutral salts and esters. Used in the manufacture of succinic anhydride and of polyesters with polyols. [Pg.375]

In this thiamine pyrophosphate-mediated process, ben2aldehyde (29), added to fermenting yeast, reacts with acetaldehyde (qv) (30), generated from glucose by the biocatalyst, to yield (R)-l-phen5l-l-hydroxy-2-propanone (31). The en2ymatically induced chiral center of (31) helps in the asymmetric reductive (chemical) condensation with methylamine to yield (lR,23)-ephedrine [299-42-3] (32). Substituted ben2aldehyde derivatives react in the same manner (80). [Pg.312]

Clotrimazole and other azole derivatives have a different mode of action than the polyenes, eg, amphotericin B. The latter biad to the ergosterol present ia the membranes of yeasts and fungi, but azole derivatives inhibit the cytochrome P-450 dependent biosynthesis of ergosterol (8—11). This inhibition not only results in a reduction of ergosterol, but also in an accumulation of C-14 methyl sterols. They disturb membrane permeabiUty, inhibit cell rephcation, and are basically responsible, in combination with the reduction of ergosterol levels, for the antifungal action. [Pg.253]

Miconazole. Miconazole nitrate [22832-87-7] (Fig. 2), the 1-phenethyl-imidazole derivative first described in 1969, interferes at low doses with the cytochrome P-450 dependent ergosterol biosynthesis in yeasts and fungi. The result is accumulation of C-14 methylated sterols on the one hand and reduction of the ergosterol levels in the membranes on the other hand (12). Analogous to clotrimazole, this leads to a disturbance in the membranes it results in inhibition of ceU repHcation, mycelium development (in C. albicans) and finally, ceU death. High concentrations of miconazole, which may be achieved with topical use, disturb the orientation of phosphoHpids in the membranes, which produces leaks (13). [Pg.253]

The two oxidoreductase systems most frequentiy used for preparation of chiral synthons include baker s yeast and horse hver alcohol dehydrogenase (HLAD). The use of baker s yeast has been recendy reviewed in great detail (6,163) and therefore will not be coveted here. The emphasis here is on dehydrogenase-catalyzed oxidation and reduction of alcohols, ketones, and keto acid, oxidations at unsaturated carbon, and Bayer-Vidiger oxidations. [Pg.347]

The simplest pyrimidine antibiotic is bacimethrin, 5-hydroxymethyl-2-methoxypyrimidin-4-amine (985), which was isolated in 1961 from Bacillus megatherium and is active against several yeasts and bacteria in vitro as well as against staphylococcal infections in vivo it has some anticarcinoma activity in mice (69MI21301). It may be synthesized by LAH reduction of ethyl 4-amino-2-methoxypyrimidine-5-carboxylate (984) which may be made by primary synthesis in poor yield, or better, from the sulfone (983) (B-68MI21304). [Pg.147]

M-Hexyl alcohol has been prepared by the reduction of ethyl caproate by means of sodium and absolute alcohoB alone or in anhydrous ammonia solution by the reduction of -caproamide by means of sodium and absolute alcohol by the reduction of -caproaldehyde by means of sodium amalgam in dilute sulfuric acid and by means of living yeast, It has also been produced by the action of nitrous acid upon w-hexylamine by the action of sodium upon a mixture of ethyl alcohol and M-butyl alcohol ... [Pg.56]

The (ZZ-ephedrine was resolved into its components by the use of d-and Z-mandelic acids. In 1921 Neuberg and Hirsch showed that benz-aldehyde was reduced by yeast, fermenting in suerose or glueose solution to benzyl aleohol and a phenylpropanolone, which proved to be Z-Ph. CHOH. CO. CH3. This ean be simultaneously, or consecutively, eondensed with methylamine and then eonverted to Z-ephedrine by reduction, e.g., with aluminium amalgam in moist ether, or by hydrogen in presenee of platinic oxide as catalyst (Knoll, Hildebrant and Klavehn ). [Pg.641]

Even more highly selective ketone reductions are earned out with baker s yeast [61, 62] (equations 50 and 51) Chiral dihydronicotinamides give carbonyl reductions of high enantioselectivity [63] (equation 52), and a crown ether containing a chiral 1,4-dihydropyridine moiety is also effective [64] (equation 52). [Pg.309]

FIGURE 19.30 (a) Pyruvate reduction to ethanol in yeast provides a means for regenerating NAD consumed in the glyceraldehyde-3-P dehydrogenase reaction, (b) In oxygen-depleted muscle, NAD is regenerated in the lactate dehydrogenase reaction. [Pg.631]


See other pages where Yeast reduction is mentioned: [Pg.11]    [Pg.331]    [Pg.339]    [Pg.311]    [Pg.21]    [Pg.48]    [Pg.49]    [Pg.99]    [Pg.389]    [Pg.465]    [Pg.132]    [Pg.551]    [Pg.631]    [Pg.639]    [Pg.811]    [Pg.66]   
See also in sourсe #XX -- [ Pg.77 , Pg.250 , Pg.251 , Pg.252 ]




SEARCH



© 2024 chempedia.info