Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid state, definition

Although the traditional point of reference for safety interlock systems is a hard-wired implementation, a programmed implementation is an alternative. The potential for latent defects in software implementation is a definite concern. Another concern is that solid-state components are not guaranteed to fail to the safe state. The former is addressed by extensive testing the latter is addressed by manufacturer-supplied and/or user-supplied diagnostics that are routinely executed by the processor within the safety interlock system. Although issues must be addressed in programmable implementations, the hard-wired implementations are not perfect either. [Pg.796]

Definitive proof of the structure of porphine in the solid state awaits a variable-temperature crystallographic (X-ray or neutron diffraction) study the analysis of the anisotropic displacement factors (ADP) should disclose any rotational motion or its absence as well as determine the positions of the inner hydrogens. A search in the September 1998 version of the Cambridge Structural Database [CSD (91MI187)] showed that the only structures of porphine (codename PORPIN) were obtained in 1965 and 1972. [Pg.25]

No simple osmium aqua ion has been definitely isolated and characterized, though in alkaline solution (and the solid state) the osmium(VIII) species 0s04(0H)2 is well characterized (sections 1.4.1 and 1.12.1). [Pg.20]

Gold(III) iodide has not been definitely characterized in the solid state substances with this formula in the solid state are probably gold(I) polyiodides Au+If AuI3 has also been detected in the gas phase (mass spectra). [Pg.281]

It must be emphasized that Equations (5.24) and (5.25) stem from the definitions of Fermi level, work function and Volta potential and are generally valid for any electrochemical cell, solid state or aqueous. We can now compare these equations with the corresponding experimental equations (5.18) and (5.19) found to hold, under rather broad temperature, gaseous composition and overpotential conditions (Figs. 5.8 to 5.16), in solid state electrochemistry ... [Pg.216]

For reasons which will become apparent below, such experimental problems are minimized in solid state electrochemistry so that both the definition and the direct measurement of absolute electrode potentials is rather straightforward. [Pg.333]

This, at first perhaps surprising fact, is important to remember as the same situation arises in solid state electrochemistry. To understand its validity it suffices to remember that the definition of the reference (zero) energy level of electrons for the she scale is simply the state of an electron at the Fermi level of any metal in equilibrium with an aqueous solution of pH=0 and pH2=l atm at 25°C. [Pg.336]

In this Appendix we summarize some of the most common questions asked by physical chemists when they first encounter NEMCA. There are also questions asked after years of exposure in this area. They have been sampled by the authors from more than 100 presentations in International Conferences on Catalysis, Electrochemistry, Solid State Ionics and Surface Science. Some of the questions are easy to answer, some are difficult and there are even some for which there is still no definitive answer. For the sake of the reader who may want to test his understanding up to this point we are first listing the questions separately, then proceed with their answer. [Pg.533]

It is curious that the chair- boat problem, which is most associated with small, liquid-state molecules, arises in the context of solid-state research (B3, II). Although the paucity of useful experiments militates against a definitive solution here E3), the frequency independence of the NMR second moment (E2), the absence of an observable free-induc-tion decay (Tj <25 fis) in the pulsed NMR spectrum (El), and the smoothness of the absorption mode itself (SI), all argue against the... [Pg.284]

Solid state The state (or phase) in which a substance has a definite... [Pg.9]

As seen from Fig. 5, upon absoption of photons with the energy hv > Eg, an electron and hole centres are formed. They migrate to different sites on the PC surface, thus becoming spatially separated. Note, that what solid state physisists call surface electron and hole centers, in fact are some definite chemical species with strong reducing and oxidizing... [Pg.42]

Adsorption related charging of surface naturally affects the value of the thermoelectron work function of semiconductor [4, 92]. According to definition the thermoelectron work function is equal to the difference in energy of a free (on the vacuum level) electron and electron in the volume of the solid state having the Fermi energy (see Fig. 1.5). In this case the calculation of adsorption change in the work function Aiqp) in... [Pg.38]

An ordered distribution of spheres of different sizes always allows a better filling of space the atoms are closer together, and the attractive bonding forces become more effective. As for the structures of other types of compound, we observe the validity of the principle of the most efficient filling of space. A definite order of atoms requires a definite chemical composition. Therefore, metal atoms having different radii preferentially will combine in the solid state with a definite stoichiometric ratio they will form an inter-metallic compound. [Pg.158]

This article is an attempt at evaluating new important features of tin(II) chemistry the central point is the interrelationship between molecular structure and reactivity of molecular tin(II) compounds. To define these compounds more closely, only those are discussed which are stable, monomeric in solvents and which may be classified as carbene analogs21. Thus, not a complete survey of tin(II) chemistry is given but stress is laid on the structures and reactions of selected compounds. A general introduction to the subject precedes the main chapters. For comparison, also solid-state tin(II) chemistry is included to demonstrate the great resemblance with molecular tin(II) chemistry. Tin(II) compounds, which are either generated as intermediates or only under definite conditions such as temperature or pressure, are not described in detail. [Pg.8]

Since 1925, The International Commission on Radiation Units and Measurements at Bethesda, Maryland has been publishing reports updating the definitions and units for measurements of various radiation-related quantities. Of these ICRU Reports, special mention may be made of reports no. 19 (1971) [radiation quantities and units], 33 (1980) [radiation quantities and units], 36 (1983) [microdosimetry], 47 (1992) [thermoluminiscent dosimetry], and 51 (1993) [radiation protection dosimetry]. A succinct description of various devices used in dosimetry, such as ionization chambers, chemical and solid-state dosimeters, and personnel (pocket) dosimeters, will be found in Spinks and Woods (1990). In this section, we will only consider some chemical dosimeters in a little detail. For a survey of the field the reader is referred to Kase et at, (1985, 1987), McLaughlin (1982), and to the International Atomic Energy Agency (1977). Of the earlier publications, many useful information can still be gleaned from Hine and Brownell (1956), Holm and Berry (1970), and Shapiro (1972). [Pg.363]

Gomes, W. (1961). "Definition of Rate Constant and Activation Energy in Solid State Reactions," Nature (London) 192, 965. An article discussing the difficulties associated with interpreting activation energies for reactions in solids. [Pg.283]


See other pages where Solid state, definition is mentioned: [Pg.75]    [Pg.75]    [Pg.883]    [Pg.43]    [Pg.21]    [Pg.296]    [Pg.34]    [Pg.352]    [Pg.356]    [Pg.529]    [Pg.55]    [Pg.366]    [Pg.83]    [Pg.1]    [Pg.189]    [Pg.218]    [Pg.739]    [Pg.337]    [Pg.98]    [Pg.13]    [Pg.43]    [Pg.152]    [Pg.690]    [Pg.1066]    [Pg.103]    [Pg.324]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Solids definition

State definition

© 2024 chempedia.info