Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium illustration

Fig. 3 Solid state 13C NMR spectra obtained on the A-phase and B-phase polymorphs of fosinopril sodium, illustrating the differences observed in the CH aliphatic and CC aliphatic regions of the spectrum. (Data adapted from Ref. 19.)... Fig. 3 Solid state 13C NMR spectra obtained on the A-phase and B-phase polymorphs of fosinopril sodium, illustrating the differences observed in the CH aliphatic and CC aliphatic regions of the spectrum. (Data adapted from Ref. 19.)...
Figure 1. Chart of nuclides from carbon to sodium, illustrating vai ious processes for production of radionuclides (10)... Figure 1. Chart of nuclides from carbon to sodium, illustrating vai ious processes for production of radionuclides (10)...
Figure 2 A partial Grotrian diagram for the element sodium illustrating the observed atomic absorptions as sohd arrows. Figure 2 A partial Grotrian diagram for the element sodium illustrating the observed atomic absorptions as sohd arrows.
As an example, Tajima and co-workers [108] used labeling to obtain the adsorption of sodium dodecyl sulfate at the solution-air interface. The results, illustrated in Fig. Ill-12, agreed very well with the Gibbs equation in the form... [Pg.77]

The importance of steric factors in the formation of penetration complexes is made evident by the observation that although sodium cetyl sulfate plus cetyl alcohol gives an excellent emulsion, the use of oleyl alcohol instead of cetyl alcohol leads to very poor emulsions. As illustrated in Fig. XIV-3, the explanation may lie in the difficulty in accommodating the kinked oleyl alcohol chain in the film. [Pg.505]

The BCC structure is illustrated in figure Al.3,3. Elements such as sodium, tungsten and iron fonn in the BCC structure. The conventional unit cell of the BCC structure is cubic, like FCC, with the length of the edge given by the lattice parameter, a. There are two atoms in the conventional cell. In the primitive unit cell, there is only one atom and the lattice vectors are given by... [Pg.99]

The rocksalt stmcture is illustrated in figure Al.3.5. This stmcture represents one of the simplest compound stmctures. Numerous ionic crystals fonn in the rocksalt stmcture, such as sodium chloride (NaCl). The conventional unit cell of the rocksalt stmcture is cubic. There are eight atoms in the conventional cell. For the primitive unit cell, the lattice vectors are the same as FCC. The basis consists of two atoms one at the origin and one displaced by one-half the body diagonal of the conventional cell. [Pg.99]

This preparation illustrates the use of dimethyl sulphate to convert a primary amino group into the secondary monomethylamino group, without the methy-lation proceeding to the tertiary dimethylamino stage. The methylation of anthranilic acid is arrested at the monomethylamino stage by using i-i molecular equiN alents of sodium hydroxide and of dimethyl sulphate. The reactions can be considered as ... [Pg.222]

Divide the saturated solution of n-butyl alcohol in water into three approximately equal parts. Treat these respectively with about 2-5 g. of sodium chloride, potassium carbonate and sodium hydroxide, and shake each until the soli have dissolved. Observe the effect of these compounds upon the solubility of n-butanol in water. These results illustrate the phenomenon of salting out of organic compounds, t.e., the decrease of solubility of organic compounds in water when the solution is saturated with an inorganic compound. The alcohol layer which separates is actually a saturated solution of water in n-butyl alcohol. [Pg.260]

The above simple experiments illustrate the more important properties of aliphatic acid chlorides. For characterisation, the general procedure is to hydrolyse the acid chloride by warming with dilute alkali solution, neutralise the resulting solution with dilute hydrochloric acid (phenol-phthalein), and evaporate to dryness on a water bath. The mixture of the sodium salt of the acid and sodium chloride thus obtained may be employed for the preparation of solid esters as detailed under Aliphatic Acids, Section 111,85. The anilide or p-toluidide may be prepared directly from the acid chloride (see (iii) above and Section III,85,i). [Pg.369]

The formation of ethyl acetoacetate is an example of a general reaction knowu as the acetoacetlc ester condensation in which an ester having hydrogen on the a-carbon atom condenses with a second molecule of the same ester or with another ester (which may or may not have hydrogen on the a-carbon atom) in the presence of a basic catalyst (sodium, sodium ethoxide, sodamide, sodium triphenylmethide) to form a p-keto-ester. The mechanism of the reaction may be illustrated by the condensation of ethyl acetate with another molecule of ethyl acetate by means of sodium ethoxide. ... [Pg.476]

The conversion of an aromatic diazonium compound into the corresponding arsonic acid by treatment with sodium arsenite in the presence of a catalyst, such as copper or a copper salt, is called the Bart reaction. A modification of the reaction employs the more stable diazonium fluoborate in place of the diazonium chlorid.i. This is illustrated by the preparation of />-nitrophenylarsonic acid ... [Pg.597]

This preparation illustrates the direct iodination of a primary aromatic amine by iodine the sodium bicarbonate removes the hydrogen iodide as formed ... [Pg.647]

The hydrolysis by alkali is illustrated by the following experimental details for benzamido. Place 3 g. of benzamide and 50 ml. of 10 per cent, sodium hydroxide solution in a 150 ml. conical or round-bottomed flask equipped with a reflux condenser. Boil the mixture gently for 30 minutes ammonia is freely evolved. Detach the condenser and continue the boiling in the open flask for 3-4 minutes to expel the residual ammonia. Cool the solution in ice, and add concentrated hydrochloric acid until the mixture is strongly acidic benzoic acid separates immediately. Leave the mixture in ice until cold, filter at the pump, wash with a little cold water and drain well. RecrystaUise the benzoic acid from hot water. Determine the m.p., and confirm its identity by a mixed m.p. test. [Pg.799]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

The formation of an organosodium compound (p-tolyl-sodium) is well illustrated by the interaction of sodium sand or wire with p-chlorotoluene in light petroleum (b.p. 40-60°) at about 25°, for when the reaction mixture is added to excess of solid carbon dioxide pure/ -toluic acid is obtained directly in a yield exceeding 70 per cent. ... [Pg.933]

The classical conditions for the Madelung indole synthesis are illustrated by the Organic Syntheses preparation of 2-methylindole which involves heating o-methylacetanilide with sodium amide at 250 C[1]. [Pg.27]

Alkylation can also be accomplished with electrophilic alkenes. There is a dichotomy between basic and acidic conditions. Under basic conditions, where the indole anion is the reactive nucleophile, A-alkylation occurs. Under acidic conditions C-alkylation is observed. The reaction of indole with 4-vinylpyri-dine is an interesting illustration. Good yields of the 3-alkylation product are obtained in refluxing acetic acid[18] whereas if the reaction is done in ethanol containing sodium ethoxide 1-alkylation occurs[19]. Table 11.2 gives some examples of 3-alkylation using electrophilic alkenes. [Pg.107]

A typical example is total monomers. 100 sodium stearate, 5 potassium persulfate, 0.3 lauryl mercaptan, 0.4 to 0.7 and water, 200 parts. In this formula, 75 parts of 1,3-butadiene and 25 parts of 4-methyl-2-vinylthiazole give 86% conversion to a tacky rubber-like copolymer in 15 hr at 45°C. The polymer contains 62% benzene-insoluble gel. Sulfur analysis indicates that the polymer contains 21 parts of combined 4-methyl-2-vinylthiazole (312). Butadiene alone in the above reaction normally requires 25 hr to achieve the same conversion, thus illustrating the acceleration due to the presence of 4-methyl-2-vinylthiazole. [Pg.398]

Table 8 1 illustrates an application of each of these to a functional group transfer matron The anionic portion of the salt substitutes for the halogen of an alkyl halide The metal cation portion becomes a lithium sodium or potassium halide... [Pg.327]

Nucleophilic addition to carbonyl groups sometimes leads to a mixture of stereoisomeric products The direction of attack is often controlled by stenc factors with the nude ophile approaching the carbonyl group at its less hindered face Sodium borohydride reduction of 7 7 dimethylbicyclo[2 2 IJheptan 2 one illustrates this point... [Pg.734]

The solubility behavior of salts of carboxylic acids having 12—18 carbons is unusual and can be illustrated by considering sodium stearate (sodium octadecanoate) As seen by the structural formula of its sodium salt... [Pg.799]

The generally accepted mechanism for nucleophilic aromatic substitution m nitro substituted aryl halides illustrated for the reaction of p fluoromtrobenzene with sodium methoxide is outlined m Figure 23 3 It is a two step addition-elimination mechanism, m which addition of the nucleophile to the aryl halide is followed by elimination of the halide leaving group Figure 23 4 shows the structure of the key intermediate The mech anism is consistent with the following experimental observations... [Pg.977]

A schematic illustration of a typical inlet apparatus for separating volatile hydrides from the analyte solution, in which they are generated upon reduction with sodium tetrahydroborate. When the mixed analyte solution containing volatile hydrides enters the main part of the gas/liquid separator, the volatiles are released and mix with argon sweep and makeup gas, with which they are transported to the center of the plasma. The unwanted analyte solution drains from the end of the gas/liquid separator. The actual construction details of these gas/liquid separators can vary considerably, but all serve the same purpose. In some of them, there can be an intermediate stage for removal of air and hydrogen from the hydrides before the latter are sent to the plasma. [Pg.100]

For the investigation of molecular recognition in micelles, adenine derivatives and positively charged (thyminylalkyl)ammonium salts such as shown in Figure 30 were prepared, which were solubilized in sodium dodecyl sulfate (SDS) solutions. Nmr studies have shown that binding occurs in a 1 1 molar ratio in the interior of the micelles as illustrated in Figure 30 (192). [Pg.192]

Fig. 1. Photograph illustrating the microstmcture of the foam which stiU persists two hours after shaking an aqueous solution containing 5% sodium dodecylsulfate. The bubble shapes ate more polyhedral near the top, where the foam is dry, and more spherical near the bottom, where the foam is wet. Fig. 1. Photograph illustrating the microstmcture of the foam which stiU persists two hours after shaking an aqueous solution containing 5% sodium dodecylsulfate. The bubble shapes ate more polyhedral near the top, where the foam is dry, and more spherical near the bottom, where the foam is wet.
The importance of hydrolysis potential, ie, whether moisture or water is present, is illustrated by the following example. In the normal dermal toxicity test, namely dry product on dry animal skin, sodium borohydride was found to be nontoxic under the classification of the Federal Hazardous Substances Act. Furthermore, it was not a skin sensitizer. But on moist skin, severe irritation and bums resulted. [Pg.306]

First Alternative. Figure 1 illustrates the first of the two alternative production processes. Here the mother Hquor from the sodium nitrate crystallization plant, normally containing about 1.5 g/L iodine as iodate, is decanted for clarification and concentration homogenization. From there the solution is spHt into two fractions. The larger fraction is fed into an absorption tower where it is contacted with SO2 obtained by sulfur combustion. In the absorption tower iodate is reduced to iodide according to the following reaction ... [Pg.361]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]


See other pages where Sodium illustration is mentioned: [Pg.35]    [Pg.35]    [Pg.271]    [Pg.474]    [Pg.2474]    [Pg.2575]    [Pg.2581]    [Pg.2589]    [Pg.194]    [Pg.336]    [Pg.591]    [Pg.716]    [Pg.880]    [Pg.1068]    [Pg.799]    [Pg.74]    [Pg.215]    [Pg.186]    [Pg.513]    [Pg.144]    [Pg.426]    [Pg.237]    [Pg.378]   
See also in sourсe #XX -- [ Pg.42 , Pg.70 , Pg.659 ]




SEARCH



Sodium chloride illustration

Sodium peroxide, illustration

© 2024 chempedia.info