Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium hypochlorite salt

Chlorine and Bromine Oxidizing Compounds. The organo chlorine compounds shown in Table 6 share chemistry with inorganic compounds, such as chlorine/77< 2-3 (9-j5y and sodium hypochlorite/7 )< /-j5 2-5 7. The fundamental action of chlorine compounds involves hydrolysis to hypochlorous acid (see Cm ORiNE oxygen acids and salts). [Pg.96]

Diacetone-L-sorbose (DAS) is oxidized at elevated temperatures in dilute sodium hydroxide in the presence of a catalyst (nickel chloride for bleach or palladium on carbon for air) or by electrolytic methods. After completion of the reaction, the mixture is worked up by acidification to 2,3 4,6-bis-0-isoptopyhdene-2-oxo-L-gulonic acid (2,3 4,6-diacetone-2-keto-L-gulonic acid) (DAG), which is isolated through filtration, washing, and drying. With sodium hypochlorite/nickel chloride, the reported DAG yields ate >90% (65). The oxidation with air has been reported, and a practical process was developed with palladium—carbon or platinum—carbon as catalyst (66,67). The electrolytic oxidation with nickel salts as the catalyst has also... [Pg.16]

Anhydrous zinc chloride can be made from the reaction of the metal with chlorine or hydrogen chloride. It is usually made commercially by the reaction of aqueous hydrochloric acid with scrap zinc materials or roasted ore, ie, cmde zinc oxide. The solution is purified in various ways depending upon the impurities present. For example, iron and manganese precipitate after partial neutralization with zinc oxide or other alkah and oxidation with chlorine or sodium hypochlorite. Heavy metals are removed with zinc powder. The solution is concentrated by boiling, and hydrochloric acid is added to prevent the formation of basic chlorides. Zinc chloride is usually sold as a 47.4 wt % (sp gr 1.53) solution, but is also produced in soHd form by further evaporation until, upon cooling, an almost anhydrous salt crystallizes. The soHd is sometimes sold in fused form. [Pg.423]

Oxidation of Aromatic Amines. The technically important dye Direct Yellow 28 (23) [10114-47-3] (Cl 19555) for cotton usage is manufactured by oxidation of dehydrothio- i ra-toluidinesulfonic acid sodium salt with sodium hypochlorite ia aqueous alkaline solutioa. [Pg.429]

A 5—6% sodium hypochlorite solution is sold for household purposes, of which the largest use is in laundry. Solutions of 10—15% NaOCl are sold for swimming pool disinfection, institutional laundries, and industrial purposes. Solutions of various strengths are used in household and industrial and institutional (I I) cleaners, disinfectants, and mildewcides. A small amount is used in textile mills. Sodium hypochlorite is also made on site with 30—40 g/L available chlorine for pulp bleaching, but its use is decreasing in order to reduce chloroform emissions (see Chlorine oxygen acids and salts). [Pg.143]

The largest use of calcium hypochlorite is for water treatment. It is also used for I I and household disinfectants, cleaners, and mildewcides. Most of the household uses have been limited to in-tank toilet bowl cleaners. In areas where chlorine cannot be shipped or is otherwise unavailable, calcium hypochlorite is used to bleach textiles in commercial laundries and textile mills. It is usually first converted to sodium hypochlorite by mixing it with an aqueous solution of sodium carbonate and removing the precipitated calcium carbonate. Or, it can be dissolved in the presence of sufficient sodium tripolyphosphate to prevent the precipitation of calcium salts. However, calcium hypochlorite is not usually used to bleach laundry and textiles because of problems with insoluble inorganic calcium salts and precipitation of soaps and anionic detergents as their calcium salts. [Pg.143]

Lithium Hypochlorite. Commercial lithium hypochlorite [13840-33-0], LiOCl, is a soHd with about 35% available chlorine. It is made from concentrated solutions of sodium hypochlorite and lithium chloride. It consists of 30% lithium hypochlorite and various other salts (34). [Pg.143]

Commercial Processes. Olin s earlier triple salt process, originally commercialized in 1928, was modified in 1983. In the patented process, a slurry of dibasic calcium hypochlorite is mixed with a strong, low salt sodium hypochlorite solution and hypochlorite Hquors and chlorinated. The resultant Ca(OCl)2 2H20 slurry is filtered, the cake going to the dry-end and the filtrate to the dibasic precipitation step where it reacts with lime. [Pg.473]

Chlorine may also be applied as calcium hypochlorite and sodium hypochlorite. Hypochlorites are salts of hypochlotous acid. Calcium hypochlorite (CafOCOj)... [Pg.465]

On heating in air, nickel forms a protective oxide and gives good service up to 700°C. Nickel is not recommended for exposure to chlorine, sulphur dioxide, nitric acid, sodium hypochlorite, mercuric or silver salts. [Pg.533]

Sodium hexakis(formato)molybdate, 3, 1235 Sodium hypochlorite alkene epoxidation manganese catalysts, 6,378 Sodium ions biology, 6, 559 selective binding biology, 6, 551 Sodium molybdate, 3, 1230 Sodium peroxoborate, 3,101 Sodium/potassium ATPase, 6, 555 vanadate inhibition, 3, 567 Sodium pump, 6, 555 mechanism, 6, 556 Sodium pyroantimonate, 3, 265 Sodium salts... [Pg.224]

Oxidation of methyl perfluoroalkyl sulphones with refluxing aqueous potassium permanganate produced the perfluorinated alkanesulphonic acid in 85% yield as the potassium salt (equation 86). On the other hand, attempted oxidation with sodium hypochlorite caused only chlorine substitution (equation 87). Reaction of the new sulphone with aqueous hydroxide gave the same perfluoroalkane sulphonic acid salt (equation 88). [Pg.993]

Sodium hypochlorite is made by bubbling chlorine gas through a solution of sodium hydroxide. In the environment, it breaks down into water, oxygen, and table salt. [Pg.191]

While pure chlorine gas will certainly bleach colors, laundry bleaches use sodium hypochlorite or calcium hypochlorite, which works by releasing oxygen, not chlorine. The chlorine remains in solution, either as sodium chloride (table salt), or calcium chloride. These bleaches are made by bubbling chlorine gas through a solution of sodium hydroxide (lye) or calcium hydroxide (quicklime). [Pg.193]

Sodium hypochlorite (NaOCl) is the active ingredient in laundry bleach. Typically, bleach contains 5.0% of this salt by mass, which is a 0.67 M solution. Determine the concentrations of all species and compute the pH of laundiy bleach. [Pg.1241]

With ammonium salts, sodium hypochlorite gives nitrogen trichloride, which detonates spontaneously. [Pg.189]

Hypochlorite Salts., Hypochlorites are powerful oxidants and therefore may degrade polymeric chains. They are often used in combination with tertiary amines [1846]. The combination of the salt and the tertiary amine increases the reaction rate more than the application of a hypochlorite alone. A tertiary amino galactomannan may serve as an amine source [1062]. This also serves as a thickener before breaking. Hypochlorites are also effective for breaking stabilized fluids [1817]. Sodium thiosulfate has been proposed as a stabilizer for high-temperature applications. [Pg.260]

Blends of sodium hypochlorite with 15% HC1 and with 12% HCl/3% HF have been used to stimulate aqueous fluid injection wells(143). Waterflood injection wells have also been stimulated by injecting linear alcohol propoxyethoxysulfate salts in the absence of any acid (144). The oil near the well bore is mobilized thus increasing the relative permeability of the rock to water (145). Temperature effects on interfacial tension and on surfactant solubility can be a critical factor in surfactant selection for this application (146). [Pg.23]

The oxidative ring-closure method is well known. Halo-substituted benzofurazans are obtained by reaction of aqueous sodium hypochlorite with potassium salts of the corresponding 2-nitroanilines (Equation 79) <2001SC2329, 2002BML233, 2003HCA1175, 2003JFC(121)171, 20030PD436>. [Pg.384]

Nitropropane Nitrosyl fluoride Nitrosyl perchlorate Nitrourea Nitrous acid Nitryl chloride Oxalic acid See under Nitromethane chlorosulfonic acid, oleum Haloalkenes, metals, nonmetals Acetones, amines, diethyl ether, metal salts, organic materials Mercury(II) and silver salts Phosphine, phosphorus trichloride, silver nitrate, semicarbazone Ammonia, sulfur trioxide, tin(IV) bromide and iodide Furfuryl alcohol, silver, mercury, sodium chlorate, sodium chlorite, sodium hypochlorite... [Pg.1479]

Oxidation of —CHtOH — —CHO (cf., 12,479-480). This oxidation can be effected in high yield with sodium hypochlorite (slight excess) in buffered H20/ CH2C12 with this nitroxyl radical and KBr as the catalysts.1 The oxidation is exothermic, and the temperature should be maintained at 0-15° with a salt-ice bath. Saturated primary alcohols are converted to aldehydes in 88-93% yield yields are lower in the case of unsaturated substrates. Addition of quaternary onium salts permits further oxidation to carboxylic acids. [Pg.302]

Methylbenzenes are oxidized to the corresponding benzoic acids in very high yield under phase-transfer catalytic conditions by sodium hypochlorite in the presence of ruthenium trichloride, which is initially oxidized to ruthenium tetroxide [5]. Absence of either the ruthenium or the quaternary ammonium salt totally inhibits the reaction. [Pg.432]


See other pages where Sodium hypochlorite salt is mentioned: [Pg.488]    [Pg.486]    [Pg.282]    [Pg.283]    [Pg.119]    [Pg.119]    [Pg.332]    [Pg.373]    [Pg.298]    [Pg.146]    [Pg.150]    [Pg.471]    [Pg.37]    [Pg.223]    [Pg.75]    [Pg.313]    [Pg.316]    [Pg.218]    [Pg.138]    [Pg.1388]    [Pg.1697]    [Pg.332]    [Pg.148]    [Pg.74]    [Pg.9]    [Pg.580]   
See also in sourсe #XX -- [ Pg.647 , Pg.997 ]




SEARCH



Hypochlorite salts

Hypochlorites Sodium hypochlorite

Low-salt sodium hypochlorite

Sodium hypochlorite

© 2024 chempedia.info