Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Single molecular beam epitaxy

The growth of a well ordered fullerene monolayer, by means of molecular beam epitaxy, has been used for the controlled nucleation of single crystalline thin films. The quality and stability of molecular thin films has been shown... [Pg.2413]

Optoelectronics is a relatively new and fast-growing industry with many applications. Thin-film processes, such as reactive sputtering, molecular-beam epitaxy (MBE), and particularly MOCVD, play a major part in their production. Equipment and materials are similar to those used in the semiconductor industry and many companies manufacture both types of products. In fact the distinction between the two areas is often blurred. Statistics generally do not single out optoelectronics as such and, for that reason, it is difficult to define the scope of the industry accurately. [Pg.384]

Summarizing, it is possible to conclude that the technique of forming ultrasmall semiconductor particles turned out to be a powerful tool for building up single-electron junctions, even working at room temperature, as well as thin semiconductor layers and superlattices with structural features, reachable in the past only via molecular beam epitaxy. [Pg.190]

MBE (molecular beam epitaxy), which involves epitaxial growth of thin films on either the same material as substrate (homoepitaxial) or a lattice-matched substrate (heteroepitaxial) the heated substrate reacts with a molecular beam of compounds containing the constituent elements of the semiconductor as well as any dopants the resultant film is essentially a single crystal slow growth rates produce films from a few nanometers thick to at most several hundred nanometers that have very high purity and controlled levels of dopants. [Pg.239]

Two popular means of growing silicon single crystals are molecular beam epitaxy (MBE) and chemical vapor deposition (CVD) se a beam... [Pg.317]

Quantum dots are the engineered counterparts to inorganic materials such as groups IV, III-V and II-VI semiconductors. These structures are prepared by complex techniques such as molecular beam epitaxy (MBE), lithography or self-assembly, much more complex than the conventional chemical synthesis. Quantum dots are usually termed artificial atoms (OD) with dimensions larger than 20-30 nm, limited by the preparation techniques. Quantum confinement, single electron transport. Coulomb blockade and related quantum effects are revealed with these OD structures (Smith, 1996). 2D arrays of such OD artificial atoms can be achieved leading to artificial periodic structures. [Pg.2]

Epitaxial Layers. Epitaxial deposition produces a single crystal layer on a substrate for device fabrication or a layer for multilevel conductive interconnects which may be of much higher quality than the substrate. The epitaxial layer may have a different dopant concentration as a result of introducing the dopant during the epitaxial growth process or may have a different composition than the substrate as in silicon on sapphire. Methods used for epitaxial growth include chemical vapor deposition (CVD), vapor phase epitaxy (VPE), liquid phase epitaxy (LPE), molecular beam epitaxy (MBE) and solid phase epitaxy (SPE). [Pg.234]

Single-walled carbon nanotubes (SWNTs) had been considered for the crossbar components of the defect-tolerant molecular computers but they have been found to be too difficult to handle due to their insolubility and their tendency to form bundles or ropes. Instead, metallic nanowires have become the materials of choice used in the construction of the crossbar devices, with ultrahigh-density lattices and circuits being built, having groups of nanowires 8 nm in diameter and 16 nm apart in layers perpendicular to each other to create nanowire junction densities of 1011 per cm2.52 The process does not depend on self-assembly but rather on molecular beam epitaxy. [Pg.87]

A ZnS layer 11 is formed on an (001) face InSb single-crystal substrate. The ZnS layer, which is polycrystalline, is removed from islands where the detector elements will be formed. Molecular beam epitaxy is then used to form an HgCdTe layer on the structure, which will produce single crystal and polycrystalline layers on detector element regions 15 and the ZnS layer 14 respectively. The detector elements are separated by the polycrystalline layer, which is electrically insulating. [Pg.205]

Experimental determinations of barrier heights on oxide semiconductor interfaces using photoelectron spectroscopy are rarely found in literature and no systematic data on interface chemistry and barrier formation on any oxide are available. So far, most of the semiconductor interface studies by photoelectron spectroscopy deal with interfaces with well-defined substrate surfaces and film structures. Mostly single crystal substrates and, in the case of semiconductor heterojunctions, lattice matched interfaces are investigated. Furthermore, highly controllable deposition techniques (typically molecular beam epitaxy) are applied, which lead to films and interfaces with well-known structure and composition. The results described in the following therefore, for the first time, provide information about interfaces with oxide semiconductors and about interfaces with sputter-deposited materials. Despite the rather complex situation, photoelectron spectroscopy studies of sputter-deposited... [Pg.130]

The structures with self-organized GaN/AlN QDs were grown by molecular beam epitaxy (MBE) on (0001) sapphire substrates. Ammonia was used as the source of active nitrogen. A single layer of GaN QDs was formed on the AIN buffer surface by a particular MBE growth mode at relatively low substrate temperatures (Ts 540°C). A beam equivalent pressure (BEP) of gallium flux was 5.4T0 Torr and BEP of ammonia flux was 10" Torr. To obtain GaN QDs... [Pg.124]

Compared with other vapour-phase deposition methods, CVD method is perhaps the most complex. Unlike growth by physical deposition such as evaporation or Molecular Beam Epitaxy (MBE), this method requires numerous test runs to determine and reach suitable growth parameters, especially for single-crystal growth. The complexity of this method results from the following facts ... [Pg.6]

Charge carriers in semiconductors can be confined in one spatial dimension (ID), two spatial dimensions (2D), or three spatial dimensions (3D). These regimes are termed quantum films, quantum wires, and quantum dots as illustrated in Fig. 9.1. Quantum films are commonly referred to as single quantum wells, multiple quantum wells or superlattices, depending on the specific number, thickness, and configuration of the thin films. These structures are produced by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) [2j. The three-dimensional quantum dots are usually produced through the synthesis of small colloidal particles. [Pg.264]

Molecular beam epitaxy. Epitaxial techniques are techniques of arranging atoms in single-crystal fashion on crystalline substrates so that the lattice of the newly grown film duplicates that of the substrate. If the film is of the same material as the substrate, the process is called homoepitaxy, epitaxy, or simply epi. The most important applications here are Si epi on Si substrates and GaAs epi on GaAs substrates. If the deposit is made on a substrate that is chemically different, the process is termed heteroepitaxy. An important application is the deposition of silicon on an insulator (SOI) e.g. with sapphire (AI2O3) as the insulator in the silicon on sapphire (SOS) process. [Pg.79]

T. J. Mattord, V. P. Kesan, D. P. Neikirk, and B. G. Streetman. A Single-Filament Effusion Cell with Reduced Thermal-Gradient for Molecular-Beam Epitaxy. Journal of Vacuum Science and Technology B, 7(2) 214-216, Mar-Apr 1989. [Pg.139]


See other pages where Single molecular beam epitaxy is mentioned: [Pg.391]    [Pg.517]    [Pg.220]    [Pg.155]    [Pg.203]    [Pg.186]    [Pg.82]    [Pg.54]    [Pg.694]    [Pg.160]    [Pg.517]    [Pg.1471]    [Pg.415]    [Pg.103]    [Pg.167]    [Pg.356]    [Pg.56]    [Pg.248]    [Pg.131]    [Pg.386]    [Pg.21]    [Pg.30]    [Pg.614]    [Pg.615]    [Pg.423]    [Pg.477]    [Pg.3073]    [Pg.151]    [Pg.316]    [Pg.723]    [Pg.79]    [Pg.4]    [Pg.533]    [Pg.8]   
See also in sourсe #XX -- [ Pg.425 ]




SEARCH



Epitaxial

Epitaxis

Epitaxy, epitaxial

Molecular beam

Molecular beam epitaxy

Molecular epitaxy

Single beam

Single-molecular

© 2024 chempedia.info