Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sediments redox reactions

Sample Preservation Without preservation, many solid samples are subject to changes in chemical composition due to the loss of volatile material, biodegradation, and chemical reactivity (particularly redox reactions). Samples stored at reduced temperatures are less prone to biodegradation and the loss of volatile material, but fracturing and phase separations may present problems. The loss of volatile material is minimized by ensuring that the sample completely fills its container without leaving a headspace where gases can collect. Samples collected from materials that have not been exposed to O2 are particularly susceptible to oxidation reactions. For example, the contact of air with anaerobic sediments must be prevented. [Pg.198]

Pure cultures of a Fe(III) reducing bacterium have been shown to obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor (Lovely et al., 1989, 1991). Such redox reactions are important because, at the onset of anaerobic conditions, e.g., in sediments and subsurface environments, Fe(III) oxides are the most abundant oxidants. [Pg.330]

Redox cycling of iron in salt marsh sediments. The solid lines and the dashed lines indicate redox reactions and precipitation reactions, respectively. [Pg.363]

Adsorption may influence precipitation by means other than the processes mentioned above. Davies (Chapter 23) discusses the role of the surface as a catalyst for oxidation of adsorbed Mnz+. Redox reactions may contribute substantially to the formation of manganese oxide coatings on mineral surfaces in soils and sediments. [Pg.13]

Biological action is very important in Se redox transformations. Rates of abiotic selenium redox reactions tend to be slow, and in soils and sediments, Se(VI), Se(IV), Se(0) and organically bormd Se often coexist (Tokrmaga et al. 1991 Zhang and Moore 1996 Zawislanski and McGratii 1998). Bacteria use Se(VI) and Se(IV) as eleclron acceptors (Blum et al. 1998 Dungan and Frankenberger 1998 Oremland et al. 1989), or oxidize elemental Se (Dowdle and Oremland 1998), and it is likely that most of the important redox transformations are microbially mediated. [Pg.291]

Many of the chemical reactions that occur in sediments during diagenesis are mediated by marine organisms or are a consequence of biotic activities. Most are energy-yielding redox reactions driven by the oxidation of organic matter and, hence, represent a critical metabolic resource to benthic organisms. [Pg.299]

The biogeochemical cycling of nitrogen is very much controlled by redox reactions. This perspective is presented in Figure 24.3 for the redox reactions that take place in the water column and sediments. The major pathways of reduction are nitrogen fixation, assimilatory nitrogen reduction, and denitrification. The major oxidation processes are nitrification and anaerobic ammonium oxidation (anammox). Each of these is described next in further detail. [Pg.667]

In the environment, Fe " oxides may help detoxify pollutants through a range of redox reactions. Chromate (Cr ) is a toxic form of Cr, whereas Cr " is not. Reduction of Cr to Cr " is, thus, a detoxifying process and takes place in soils and sediments... [Pg.547]

Table III shows the abundance of various elements in the earth s crust and the oxidation states they frequently occupy. The table indicates that of the 14 most abundant elements, only six participate in redox reactions in the surface layers of the earth. [PH3 seems to be extremely rare (42) and will not be discussed.] Because by definition free oxygen as 02 is absent in the anoxic zone, it is evident that oxides of Fe(III) are the most important oxidizers in anoxic environment and that S042 and higher oxides of manganese are of importance only locally. Reducing compounds of importance are organic matter and sulfides, the latter frequently from volcanic emanations. Hydrogen is commonly combined with other elements, as in H20, CH4, and NH3 but may locally occur free as H2. Since iron is the most widespread element that can serve as an oxidizer in the anoxic environment the distribution of the valence states of iron in various rocks is of interest (see Table IV). Sandstones frequently have a high Fe203/Fe0 ratio, but shales and clays may also be highly oxidized as shown in Tables IV and V. Since approximately 75% of the earth s surface is covered with sediments and since the sediments... Table III shows the abundance of various elements in the earth s crust and the oxidation states they frequently occupy. The table indicates that of the 14 most abundant elements, only six participate in redox reactions in the surface layers of the earth. [PH3 seems to be extremely rare (42) and will not be discussed.] Because by definition free oxygen as 02 is absent in the anoxic zone, it is evident that oxides of Fe(III) are the most important oxidizers in anoxic environment and that S042 and higher oxides of manganese are of importance only locally. Reducing compounds of importance are organic matter and sulfides, the latter frequently from volcanic emanations. Hydrogen is commonly combined with other elements, as in H20, CH4, and NH3 but may locally occur free as H2. Since iron is the most widespread element that can serve as an oxidizer in the anoxic environment the distribution of the valence states of iron in various rocks is of interest (see Table IV). Sandstones frequently have a high Fe203/Fe0 ratio, but shales and clays may also be highly oxidized as shown in Tables IV and V. Since approximately 75% of the earth s surface is covered with sediments and since the sediments...
The constituents discussed above may participate in the following redox reactions. No attempt is made to cover every possible redox process in the sediments and in the hydrosphere but only to give an idea of how some different redox reactions may proceed, depending on the environments. [Pg.304]

We can now study the redox reactions that occur in two model pelagic sediments during the diagenesis and metamorphism. In Model I the average values in Table VI, Column 1 will be used. In Model II the maximum values in Table VI, Column 2 for FeOOH and MnOOH will be used. The content of organic matter will in both cases be assumed to be about 0.25 moles. [Pg.309]

Redox Reactions. Aquatic organisms may alter the particular oxidation state of some elements in natural waters during activity. One of the most significant reactions of this type is sulfate reduction to sulfide in anoxic waters. The sulfide formed from this reaction can initiate several chemical reactions that can radically change the types and amounts of elements in solution. The classical example of this reaction is the reduction of ferric iron by sulfide. The resultant ferrous iron and other transition metals may precipitate with additional sulfide formed from further biochemically reduced sulfate. Iron reduction is often accompanied by a release of precipitated or sorbed phosphate. Gardner and Lee (21) and Lee (36) have shown that Lake Mendota surface sediments contain up to 20,000 p.p.m. of ferrous iron and a few thousand p.p.m. of sulfide. The biochemical formation of sulfide is undoubtedly important in determining the oxidation state and amounts of several elements in natural waters. [Pg.341]

Following consumption of dissolved O2, the thermodynamically favored electron acceptor is nitrate (N03-). Nitrate reduction can be coupled to anaerobic oxidation of metal sulfides (Appelo and Postma, 1999), which may include arsenic-rich phases. The release of sorbed arsenic may also be coupled to the reduction of Mn(IV) (oxy)(hydr)oxides, such as birnessite CS-MnCb) (Scott and Morgan, 1995). The electrostatic bond between the sorbed arsenic and the host mineral is dramatically weakened by an overall decrease of net positive charge so that surface-complexed arsenic could dissolve. However, arsenic liberated by these redox reactions may reprecipitate as a mixed As(III)-Mn(II) solid phase (Toumassat et al., 2002) or resorb as surface complexes by iron (oxy)(hydr)oxides (McArthur et al., 2004). The most widespread arsenic occurrence in natural waters probably results from reduction of iron (oxy)(hydr)oxides under anoxic conditions, which are commonly associated with rapid sediment accumulation and burial (Smedley and Kinniburgh, 2002). In anoxic alluvial aquifers, iron is commonly the dominant redox-sensitive solute with concentrations as high as 30 mg L-1 (Smedley and Kinniburgh, 2002). However, the reduction of As(V) to As(III) may lag behind Fe(III) reduction (Islam et al., 2004). [Pg.311]

The role of transition metal oxide/hydroxide minerals such as Fe and Mn oxides in redox reactions in soils and aqueous sediments is pronounced (Stumm and Morgan, 1980 Oscarson et al., 1981a). These oxides occur widely as suspended particles in surface waters and as coatings on soils and sediments (Taylor and McKenzie, 1966). [Pg.163]

Oxidation-reduction (redox) reactions, along with hydrolysis and acid-base reactions, account for the vast majority of chemical reactions that occur in aquatic environmental systems. Factors that affect redox kinetics include environmental redox conditions, ionic strength, pH-value, temperature, speciation, and sorption (Tratnyek and Macalady, 2000). Sediment and particulate matter in water bodies may influence greatly the efficacy of abiotic transformations by altering the truly dissolved (i.e., non-sorbed) fraction of the compounds — the only fraction available for reactions (Weber and Wolfe, 1987). Among the possible abiotic transformation pathways, hydrolysis has received the most attention, though only some compound classes are potentially hydrolyzable (e.g., alkyl halides, amides, amines, carbamates, esters, epoxides, and nitriles [Harris, 1990 Peijnenburg, 1991]). Current efforts to incorporate reaction kinetics and pathways for reductive transformations into environmental exposure models are due to the fact that many of them result in reaction products that may be of more concern than the parent compounds (Tratnyek et al., 2003). [Pg.324]

Hines, M.E. (1991) The role of certain infauna and vascular plants in the mediation of redox reactions in marine sediments. In Diversity of Environmental Biogeochemistry (Berthelin, J., ed.), pp. 275-286, Elsevier, Amsterdam. [Pg.597]

The suboxic zone is defined as the region between where oxygen decreases to near zero (O2 < 10 xM) and where sulfide first appears (H2S > 1 iM) [16, 17]. Many important redox reactions involving Fe, Mn, N, and other intermediate redox elements occur in the suboxic zone. Similar redox reactions take place in sediments throughout the world s oceans, but they are easier to study in the Black Sea because they are spread out over a depth scale of tens of meters (rather than centimeter or millimeter scales as in sediments). The Black Sea suboxic layer hydrophysical structure is very stable compared with other ocean redox regions such as Cariaco Trench, which is influenced by mesoscale eddies, or the Baltic Sea that is influenced by inflows of the North Sea saline oxygenated waters in cold winters. [Pg.280]

The property of chemotropicity testifies to the balance of the redox layer system with respect to the vertical fluxes of the oxidants and reductants supplied. This should be the well-defined sequence of changes with depth of the favorability of the potential redox reactions [ 17,75] that can be realized by the bacterial community. The development of bacteria in this case should affect the distributions of nutrients. By modern estimation [79] the chemosynthetic production is comparable with photosynthetic production, and that should in the same manner affect the consumption of inorganic nutrients and production of their organic forms. Besides this the possible abiotic chemical reactions and the sedimentation of particulate matter of different densities should also play their roles in this mechanism. [Pg.301]


See other pages where Sediments redox reactions is mentioned: [Pg.186]    [Pg.413]    [Pg.9]    [Pg.329]    [Pg.311]    [Pg.172]    [Pg.202]    [Pg.259]    [Pg.267]    [Pg.311]    [Pg.441]    [Pg.693]    [Pg.201]    [Pg.279]    [Pg.10]    [Pg.277]    [Pg.460]    [Pg.590]    [Pg.448]    [Pg.498]    [Pg.293]    [Pg.294]    [Pg.315]    [Pg.178]    [Pg.207]    [Pg.408]    [Pg.301]    [Pg.154]    [Pg.147]    [Pg.210]    [Pg.248]   
See also in sourсe #XX -- [ Pg.310 , Pg.315 ]




SEARCH



Redox sediments

© 2024 chempedia.info