Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfide forms

Compounds with active hydrogen add to the carbonyl group of acetone, often followed by the condensation of another molecule of the addend or loss of water. Hydrogen sulfide forms hexamethyl-l,3,5-trithiane probably through the transitory intermediate thioacetone which readily trimerizes. Hydrogen cyanide forms acetone cyanohydrin [75-86-5] (CH2)2C(OH)CN, which is further processed to methacrylates. Ammonia and hydrogen cyanide give (CH2)2C(NH2)CN [19355-69-2] ix.orn. 6<55i the widely used polymerization initiator, azobisisobutyronitrile [78-67-1] is made (4). [Pg.93]

Bonding Agents. These materials are generally only used in wire cable coat compounds. They are basically organic complexes of cobalt and cobalt—boron. In wire coat compounds they are used at very low levels of active cobalt to aid in the copper sulfide complex formation that is the primary adherance stmcture. The copper sulfide stmcture builds up at the brass mbber interface through copper in the brass and sulfur from the compound. The dendrites of copper sulfide formed entrap the polymer chains before the compound is vulcanized thus hoi ding the mbber firmly to the wire. [Pg.251]

Strontium Oxide, Hydroxide, and Peroxide. Strontium oxide, SrO, is a white powder that has a specific gravity of 4.7 and a melting point of 2430°C. It is made by heating strontium carbonate with carbon in an electric furnace, or by heating celestite with carbon and treating the sulfide formed with caustic soda and then calcining the product (10). It reacts with water to form strontium hydroxide [18480-07-4] and is used as the source of strontium peroxide [1314-18-7],... [Pg.475]

Anhydrous gaseous or Hquid hydrogen sulfide is practically nonacidic, but aqueous solutions are weakly acid. The for the first hydrogen is 9.1 X 10 at 18°C for the second, is 1.2 x 10 . Reaction of hydrogen sulfide with one molar equivalent of sodium hydroxide gives sodium hydrosulfide with two molar equivalents of sodium hydroxide, sodium sulfide forms. Hydrogen sulfide reacts with sodium carbonate to produce sodium hydrosulfide... [Pg.134]

The by-products of these reactions are sulfides. The sulfide formed in the synthesis of 2-mercaptoethanol, 3-thia-l,5-pentanediol (thiodiglycol), has a variety of uses ranging from lubricant additive intermediates to textile finishing. [Pg.11]

The main by-products of this type of process are sulfides and disulfides. The disulfides are formed by the inclusion of an oxidizing agent (generally oxygen) that may be present in the reaction mixture or upon purification. Some of the sulfides formed in this fashion are useful as intermediates for the production of antioxidants. Other mercaptopropionates can be made in similar fashion, if the alkyl acrylate is available. [Pg.11]

The anhydro sulfide forms in the ether layer and is readily separated. [Pg.363]

The appHcations of supported metal sulfides are unique with respect to catalyst deactivation phenomena. The catalysts used for processing of petroleum residua accumulate massive amounts of deposits consisting of sulfides formed from the organometaHic constituents of the oil, principally nickel and vanadium (102). These, with coke, cover the catalyst surface and plug the pores. The catalysts are unusual in that they can function with masses of these deposits that are sometimes even more than the mass of the original fresh catalyst. Mass transport is important, as the deposits are typically formed... [Pg.182]

Many metal sulfides produce poorly adherent corrosion product layers. This leads to rapid spalling during thermal cycling or turbulent flow. In particular, nonadherent and easily spalled sulfides form on steel and cast irons. [Pg.76]

However, when the vulcanization temperature was increased to 190°C, it was observed that the peaks in the copper and sulfur profiles no longer coincided. Instead, the peak in the sulfur profile coincided with the peaks in the zinc and oxygen profiles. These results indicated that at higher vulcanizing temperatures, zinc sulfide formed in abundance while formation of copper sulfide decreased. [Pg.295]

The principal constituents of the paniculate matter are lead/zinc and iron oxides, but oxides of metals such as arsenic, antimony, cadmium, copper, and mercury are also present, along with metallic sulfates. Dust from raw materials handling contains metals, mainly in sulfidic form, although chlorides, fluorides, and metals in other chemical forms may be present. Off-gases contain fine dust panicles and volatile impurities such as arsenic, fluorine, and mercury. [Pg.132]

Both CSs and CSs were also successfully generated by the fragmentation of ionized 4,5-dioxo-2-thioxo-l,3-dithione (65) and 2-thioxo-l,3-dithiole (66) (90JA3750). Tire three sulfur atoms in the anion and cation radicals were chemically equivalent, suggesting that they take the D h (or C2u) form (67 or 68). On the other hand, under similar conditions, 3-thioxo-1,2-dithiole (69) yielded two isomeric cation radicals the (or 2 ) form and the carbon disulfide 5-sulfide form (70). Ab initio calculations on three electronic states of CS3 at the 6-31G -l-ZPVE level indicated that the C21, form (68) was more stable than the carbon disulfide 5-sulfide form (70) in the neutral (both singlet and triplet states) and the anion radical states, but 68 was less stable than 70 in the radical cation state. [Pg.235]

Conditions under which the reaction is directed solely toward the formation of the sulfide 46 (yield of up to 89.5%) have been reported (79ZOR1554) Liquid ammonia is used as a solvent, whereas sulfide ions are generated by ammonium sulfide formed directly in the reaction mixture from ammonia and hydrogen sulfide. The sulfide 46 possesses the Z,Z-configuration, providing evidence for a high trans stereoselectivity of the reaction (79ZOR1554). [Pg.172]

Diphenylimidazole with palladium acetate forms the cyclometallated complex 80 (X = OAc) (97AOC491). The acetate group is replaced by chloride or bromide when 80 (X = OAc) reacts with sodium chloride or lithium bromide, respectively, to give 80 (X = C1, Br). Bromide with diethyl sulfide forms the mononuclear complex 81. Similar reactions are known for 1 -acetyl-2-phenylimidazole (96JOM(522)97). 1,5-Bis(A -methylimidazol-2-yl)pen-tane with palladium(II) acetate gives the cyclometallated complex 82 (OOJOM (607)194). [Pg.138]

Recently, a poly(heteroarylene sulfide) formed by the reaction between bis(thiophenols) and bis(6-chlorophe-nyl quinoxalines) has been reported by Hedrick et al. [58]. [Pg.39]

With the exception of ionic sulfides formed from highly electropositive elements (i.e., Na, K, Ca, Mg), sulfur bonding in natural environments is covalent. When fully oxidized, however, the covalently bonded sulfur atom exists... [Pg.343]

Based on these considerations, Croft prepared six formulations containing various combinations of NBR and NBR/PVC with CR and SBR and measured their oil, heat and ozone resistance, physical properties, and adhesion characteristics. Whereas the physicals are satisfactory for aU compounds, formulations based on NBR, NBR/PVC with CR performed better on heat and oil aging than the compounds containing SBR as shown in Tables 11.6 and 11.7. However, the adhesion is better with the latter compounds. It has been suggested that cuprous sulfide formed on the wire surface interacts with the double bond in SBR to provide the improvement in adhesion. [Pg.310]

Explain why hydrodesulfurization catalysts are used in the sulfidic form. Would it be possible to use metal catalysts for this process ... [Pg.412]

The drop in intensity can best be explained by assuming that the molybdenum sulfide form is sintering into large clusters. The model of Kerkhof and Moulijn (20) was used to interpret this data. [Pg.9]

Microsensors have been used to develop profiles in mixed species biofilms. Figure 10 shows concentration profiles of sulfide, oxygen, and pH in a biofilm accumulated on the surface of a mild steel corrosion coupon. The concentration of sulfide is highest near the metal surface, where iron sulfide forms quickly and covers the steel surface if both ferrous and sulfide ions are available. At low ferrous ion concentrations, adherent and temporarily protective films of iron sulfides are formed on the steel surface, with a consequent reduction in corrosion rate. High rates of SRB-induced corrosion of mild steel are maintained only in high concentrations of ferrous ion. [Pg.224]

Sulfiir-anchored SAMs and thin films, mostly from organosulfiir precursors, have been discussed at length by a number of authors [10, 181]. SAMs of organosulfiir compounds (thiols, disulfides, sulfides) form on gold substrates by spontaneous adsorption from either the liquid or the vapor phase. A number of experimental factors can affect the formation and structure of SAMs such as choice of solvent, temperature, concentration, immersion time, purity of adsorbate, oxygen concentration in solution, cleanliness, and structure of the adsorbate. Interestingly, the... [Pg.338]

The copper sulfide formed on the surface of the sphalerite mineral reacts readily with the xanthate, and forms insoluble copper xanthate, which makes the sphalerite surface hydro-phobic. Such a reaction for activating sphalerite occurs whenever the activating ions are present in the solution. It is thus necessary to deactivate sphalerite (to prevent the occurrence of natural activation) in the case of some ores. With lead-zinc ores, for example, natural activation occurs due to Pb2+ in solution... [Pg.205]

The copper remaining in lead after the above operation is removed by matte formation. Finely divided sulfur is added to molten lead at temperatures slightly above its melting point, and the melt is stirred continuously. Copper sulfide forms and floats on the surface, leaving the bullion substantially free of copper (less than 0.005%). The standard free energies of formation of cuprous sulfide and lead sulfide are about the same the observed separation must, therefore, be due to kinetic factors or to the influence of certain minor impurities that are present in the lead. [Pg.436]

Broderius SJ, Smith LL Jr, Lind DT. 1977. Relative toxicity of free cyanide and dissolved sulfide forms to the fathead minnow (Pimephales promelas). Journal of the Fisheries Research Board of Canada 34 2323-2332. [Pg.179]

The moist sulfide readily oxidises in air exothermally, and may reach incandescence. Grinding in a mortar hastens this [1]. The impure sulfide formed when steel processing equipment is used with materials containing hydrogen sulfide or volatile sulfur compounds is pyrophoric, and has caused many fires and explosions when such equipment is opened without effective purging. Various methods of purging are discussed [2], Formation of pyrophoric FeS in bitumen tanks is considered as a cause of spontaneous ignition and explosion in the head space [3], A detailed study of formation of possibly pyrophoric sulphides from rust in crude oil tankers has been made [4],... [Pg.1552]

Some hair-coloring products contain the water-soluble compound lead (II) acetate, Pb(CH3COO)2. When the coloring product is applied to the hair, a chemical reaction occurs between the Pb2+ ion and the sulfur atoms in cysteine and methionine incorporated in amino acids in hair proteins. The insoluble black product lead(II) sulfide forms. [Pg.59]

The sulfides of trace elements in soils and sediments are also of importance in controlling the availability and mobility of trace elements, especially for land disposal of sulfide-rich sediments or anaerobic digested sludge. Due to the oxic nature in arid soils, most of the sulfur is present as sulfate thus, this problem may not be pressing. In most current SSD schedules, the majority of the sulfide forms are included in the organic bound or residual fractions. [Pg.129]


See other pages where Sulfide forms is mentioned: [Pg.172]    [Pg.207]    [Pg.134]    [Pg.135]    [Pg.164]    [Pg.201]    [Pg.209]    [Pg.240]    [Pg.1025]    [Pg.1551]    [Pg.12]    [Pg.220]    [Pg.456]    [Pg.98]    [Pg.508]    [Pg.80]    [Pg.560]    [Pg.773]    [Pg.258]    [Pg.119]    [Pg.975]    [Pg.42]    [Pg.137]    [Pg.55]   
See also in sourсe #XX -- [ Pg.207 ]

See also in sourсe #XX -- [ Pg.46 ]




SEARCH



© 2024 chempedia.info