Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water column

Data gathering in the water column should not be overlooked at the appraisal stage of the field life. Assessing the size and flow properties of the aquifer are essential in predicting the pressure support which may be provided. Sampling of the formation water is necessary to assess the salinity of the water for use in the determination of hydrocarbon saturations. [Pg.115]

The prediction of the size and permeability of the aquifer is usually difficult, since there is typically little data collected in the water column exploration and appraisal wells are usually targeted at locating oil. Hence the prediction of aquifer response often remains a major uncertainty during reservoir development planning. In order to see the reaction of an aquifer, it is necessary to produce from the oil column, and measure the response in terms of reservoir pressure and fluid contact movement use is made of the material balance technique to determine the contribution to pressure support made by the aquifer. Typically 5% of the STOMP must be produced to measure the response this may take a number of years. [Pg.191]

The number of injectors required may be estimated in a similar manner, but it is unlikely that the exploration and appraisal activities will have included injectivity tests, of say water injection into the water column of the reservoir. In this case, an estimate must be made of the injection potential, based on an assessment of reservoir quality in the water column, which may be reduced by the effects of compaction and diagenesis. Development plans based on water injection or natural aquifer drive often suffer from lack of data from the water bearing part of the reservoir, since appraisal activity to establish the reservoir properties in the water column is frequently overlooked. In the absence of any data, a range of assumptions of injectivity should be generated, to yield a range of number of wells required. If this range introduces large uncertainties into the development plan, then appraisal effort to reduce this uncertainty may be justified. [Pg.214]

Fig. 4 illustrates the time-dependence of the length of top s water column in conical capillary of the dimensions R = 15 pm and lo =310 pm at temperature T = 22°C. Experimental data for the top s column are approximated by the formula (11). The value of A is selected under the requirement to ensure optimum correlation between experimental and theoretical data. It gives Ae =3,810 J. One can see that there is satisfactory correlation between experimental and theoretical dependencies. Moreover, the value Ae has the same order of magnitude as Hamaker constant Ah. But just Ah describes one of the main components of disjoining pressure IT [13]. It confirms the rightness of our physical arguments, described above, to explain the mechanism of two-side liquid penetration into dead-end capillaries. [Pg.617]

Ultraviolet (uv) light has also been used to stetili2e the water in aquaculture systems. The effectiveness of uv decreases with the thickness of the water column being treated, so the water is usually flowed past uv lights as a thin film (alternatively, the water may flow through a tube a few cm in diameter that is surrounded by uv lights). Uv systems require more routine maintenance than o2one systems. Uv bulbs lose their power with time and need... [Pg.18]

Plutonium solutions that have a low activity (<3.7 x 10 Bq (1 mCi) or 10 mg of Pu) and that do not produce aerosols can be handled safely by a trained radiochemist in a laboratory fume hood with face velocity 125—150 linear feet per minute (38—45 m/min). Larger amounts of solutions, solutions that may produce aerosols, and plutonium compounds that are not air-sensitive are handled in glove boxes that ate maintained at a slight negative pressure, ca 0.1 kPa (0.001 atm, more precisely measured as 1.0—1.2 cm (0.35—0.50 in.) differential pressure on a water column) with respect to the surrounding laboratory pressure (176,179—181). This air is exhausted through high efficiency particulate (HEPA) filters. [Pg.204]

Pneumatic systems use the wave motion to pressurize air in an oscillating water column (OWC). The pressurized air is then passed through an air turbine to generate electricity. In hydrauhc systems, wave motion is used to pressurize water or other fluids, which are subsequendy passed through a turbine or motor that drives a generator. Hydropower systems concentrate wave peaks and store the water dehvered in the waves in an elevated basin. The potential energy suppHed mns a low head hydro plant with seawater. [Pg.111]

For tank work, inches water column (in. wc) or ounces per square inch (osi) are commonly used to express the value of pressure or vacuum in the vapor space of a tank. These pressures are usually very low relative to atmospheric pressure. The common measures of pressure are compared as follows ... [Pg.311]

Aluminum geodesic dome roof tanks are becoming popular. These are often the economic choice. They offer superior corrosion resistance for a wide range of conditions, and are clear span stmctures not requiring internal supports. They can also be built to any required diameter. However, domes caimot handle more than a few inches of water column internal or external pressure. [Pg.313]

Minimum Reilux with Pinch Zone. There are some distillations where the minimum reflux does not occur at the intersection of the upper and lower operating lines and the q line. These cases arise when the equiUbrium is skewed from positive activity coefficients and when the operating line intersects the equiUbrium line in a 2one of constant composition, a pinch 2one, which is not at the line intersection. Figure 14 illustrates such a case. An example of such a pinch 2one in an ethanol—water column is available (37). [Pg.166]

To prevent dust and vapor escape at the cylinder seals, a negative internal pressure of 50—100 Pa (0.5—1.0 cm of water column) is maintained. [Pg.253]

Relatively low operating pressure drops (for degree of particulate removal obtained) in the range of approximately 2- to 6-in water column... [Pg.2180]

Medium pressure-drop requirements, typically in the range 4- to 10-in water column... [Pg.2180]

Typically an inlet pressure decrease of one inch of water column reduces the power output by 0.4 percent and increases the heat rate by 0.125 percent. Similarly, an exhaust pressure increase of one inch of water reduces the power output by 0.15 percent and the heat rate by 0.125 percent. [Pg.2516]

Once the particle-reactive species have been scavenged, subsequent packaging and/or aggregation can result in the flux of particles and particle-reactive species from the water column. Thorium provides a unique way to study the environmental pathways and the biogeochemical processes that affect particle-reactive species. The four useful thorium isotopes are Th = A x yx), °Th... [Pg.46]

Joly observed elevated "Ra activities in deep-sea sediments that he attributed to water column scavenging and removal processes. This hypothesis was later challenged with the hrst seawater °Th measurements (parent of "Ra), and these new results conhrmed that radium was instead actively migrating across the marine sediment-water interface. This seabed source stimulated much activity to use radium as a tracer for ocean circulation. Unfortunately, the utility of Ra as a deep ocean circulation tracer never came to full fruition as biological cycling has been repeatedly shown to have a strong and unpredictable effect on the vertical distribution of this isotope. [Pg.48]

There are two main sources of Rn to the ocean (1) the decay of sediment-bound "Ra and (2) decay of dissolved "Ra in a water column. Radon can enter the sediment porewater through alpha recoil during decay events. Since radon is chemically inert, it readily diffuses from bottom sediments into overlying waters. The diffusion of radon from sediments to the water column gives rise to the disequilibrium (excess Rn) observed in near-bottom waters. Radon is also continuously being produced in the water column through the decay of dissolved or particulate "Ra. [Pg.49]

TBT exists in solution as a large univalent cation and forms a neutral complex with CH or OH . It is extremely surface active and so is readily adsorbed onto suspended particulate material. Such adsorption and deposition to the sediments limits its lifetime in the water column. Degradation, via photochemical reactions... [Pg.87]

When considering the availability of nutrients, it is also necessary to examine the significance of nutrient re-use within the waterbody. These internal sources amount not to an additional load, but a multiplier on the recyclability of the same load. This nutrient recycling and the internal stores from which they are recycled are often misunderstood, but there is a dearth of good published data about how these recycling mechanisms operate. Microbial decomposition in the water column is one of several internal loops recognized in recent years, but these are not closed and the flux of nutrients recycled through them is delayed rather than retained. [Pg.34]

Most lakes affected by eutrophication will also have significant amounts of phosphorus in their sediments, which can be recycled into the water column (Section 4). The control of this source can be achieved by treating the sediments with iron salts or calcite to bind the phosphorus more tightly into the sediments. These methods have been used to some effect, but consideration has to be given to the quality of the materials used and whether or not the lake can become de-oxygenated in the summer. In the latter case this can be overcome by artificial de-stratification. [Pg.37]

Two more consequences must be recognized about the very low pressure increases of 1 to 200 mm of water column made by the blowers. One is that those piressure surges, common in turbocompressors generating large pressure increases, are absent in these fans therefore, these can be operated at low flows. The second is that, in calculation of energy consumption and dissipation, the expression for incompressible fluids can be used even for gases. [Pg.65]

Water hammer arrestors, if correctly sized, placed, and maintained, will reduce water hammer by providing a controlled expansion chamber in the system. As the forward motion of the water column in the pipe is stopped by the valve, a portion of the reversing column is forced into the water hammer arrestor. The water chamber of the arrestor expands at a rate controlled by the pressure chamber and gradually slows the column, preventing hydraulic shock. [Pg.313]

If a check valve is used in a system without an arrestor, excessive pressure may be exerted on the system when the reversing water column is violently stopped by the check valve. If a float-type air vent is located between the check valve and the closing valve, the float could easily be ruptured. [Pg.313]

Relatively low pressure drop (2 to 6 inches water column), compared to amount of PM removed ... [Pg.403]


See other pages where Water column is mentioned: [Pg.191]    [Pg.432]    [Pg.161]    [Pg.204]    [Pg.308]    [Pg.311]    [Pg.890]    [Pg.924]    [Pg.924]    [Pg.21]    [Pg.24]    [Pg.28]    [Pg.35]    [Pg.38]    [Pg.39]    [Pg.46]    [Pg.47]    [Pg.47]    [Pg.48]    [Pg.50]    [Pg.50]    [Pg.81]    [Pg.103]    [Pg.113]    [Pg.5]    [Pg.70]    [Pg.21]   
See also in sourсe #XX -- [ Pg.401 ]

See also in sourсe #XX -- [ Pg.18 , Pg.21 , Pg.69 , Pg.71 , Pg.78 , Pg.79 , Pg.80 , Pg.91 , Pg.109 , Pg.116 , Pg.219 , Pg.259 , Pg.269 , Pg.280 , Pg.282 , Pg.291 , Pg.315 , Pg.320 ]

See also in sourсe #XX -- [ Pg.454 ]




SEARCH



© 2024 chempedia.info