Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Section 4.7 Precipitation

Stem layer adsorption was involved in the discussion of the effect of ions on f potentials (Section V-6), electrocapillary behavior (Section V-7), and electrode potentials (Section V-8) and enters into the effect of electrolytes on charged monolayers (Section XV-6). More speciflcally, this type of behavior occurs in the adsorption of electrolytes by ionic crystals. A large amount of wotk of this type has been done, partly because of the importance of such effects on the purity of precipitates of analytical interest and partly because of the role of such adsorption in coagulation and other colloid chemical processes. Early studies include those by Weiser [157], by Paneth, Hahn, and Fajans [158], and by Kolthoff and co-workers [159], A recent calorimetric study of proton adsorption by Lyklema and co-workers [160] supports a new thermodynamic analysis of double-layer formation. A recent example of this is found in a study... [Pg.412]

Zinc cyanide. Solutions of the reactants are prepared by dis solving 100 g. of technical sodium cyanide (97-98 per cent. NaCN) in 125 ml. of water and 150 g. of anhydrous zinc chloride in the minimum volume of 50 per cent, alcohol (1). The sodium cyanide solution is added rapidly, with agitation, to the zinc chloride solution. The precipitated zinc cyanide is filtered off at the pump, drained well, washed with alcohol and then with ether. It is dried in a desiccator or in an air bath at 50°, and preserved in a tightly stoppered bottle. The yield is almost quantitative and the zinc cyanide has a purity of 95-98 per cent. (2). It has been stated that highly purified zinc cyanide does not react in the Adams modification of the Gattermann reaction (compare Section IV,12l). The product, prepared by the above method is, however, highly satisfactory. Commercial zinc cyanide may also be used. [Pg.201]

Add 1 ml. of the alcohol-free ether to 0-1-0-15 g. of finely-powdered anhydrous zinc chloride and 0 5 g. of pure 3 5-dinitrobenzoyl chloride (Section 111,27,1) contained in a test-tube attach a small water condenser and reflux gently for 1 hour. Treat the reaction product with 10 ml. of 1-5N sodium carbonate solution, heat and stir the mixture for 1 minute upon a boiling water bath, allow to cool, and filter at the pump. Wash the precipitate with 5 ml. of 1 5N sodium carbonate solution and twice with 6 ml. of ether. Dry on a porous tile or upon a pad of filter paper. Transfer the crude ester to a test-tube and boil it with 10 ml. of chloroform or carbon tetrachloride filter the hot solution, if necessary. If the ester does not separate on cooling, evaporate to dryness on a water bath, and recrystallise the residue from 2-3 ml. of either of the above solvents. Determine the melting point of the resulting 3 5 dinitro benzoate (Section 111,27). [Pg.316]

Preparation of silver maleate. Dissolve 65 g. of pure maleic acid (Section 111,143) in the calculated quantity of carefully standardised 3-5N aqueous ammonia solution in a 1-htre beaker and add, whilst stirring mechanically, a solution of 204 g. of silver nitrate in 200 ml. of water. Filter oflf the precipitated silver maleate at the pump, wash it with distilled water, and press well with the back of a large flat glass stopper. Dry in an electric oven at 50-60° to constant weight. The yield of the dry silver salt is 150 g. Store in a vacuum desiccator in the dark. [Pg.388]

Pelargonic acid (n-Nonoic acid), CH3(CH2),COOH. Equip a 1-litre, three-necked flask with a reflux condenser, a mercury-sealed stirrer, a dropping funnel and a thermometer. Place 23 g. of sodium, cut in small pieces, in the flask, and add 500 ml. of anhydrous n-butyl alcohol (1) in two or three portions follow the experimental details given in Section 111,152 for the preparation of a solution of sodium ethoxide. When the sodium has reacted completely, allow the solution to cool to 70-80° and add 160 g. (152 ml.) of redistilled ethyl malonate rapidly and with stirring. Heat the solution to 80-90°, and place 182 5 g. (160 ml.) of n-heptyl bromide (compare experimental details in Section 111,37) in the dropping funnel. Add the bromide slowly at first until precipitation of sodium bromide commences, and subsequently at such a rate that the n-butyl alcohol refluxes gently. Reflux the mixture until it is neutral to moist litmus (about 1 hour). [Pg.487]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

Dissolve 0-5 g. of the substance in 10 ml. of 50 per cent, alcohol, add 0-5 g. of solid ammonium chloride and about 0 -5 g. of zinc powder. Heat the mixture to boiling, and allow the ensuing chemical reaction to proceed for 5 minutes. Filter from the excess of zinc powder, and teat the filtrate with Tollen s reagent Section 111,70, (i). An immediate black or grey precipitate or a silver mirror indicates the presence of a hydroxyl-amine formed by reduction of the nitro compound. Alternatively, the filtrate may be warmed with Fehling s solution, when cuprous oxide will be precipitated if a hydroxylamine is present. Make certain that the original compound does not aflfect the reagent used. [Pg.529]

Add 25 g. of finely-powdered, dry acetanilide to 25 ml. of glacial acetic acid contained in a 500 ml. beaker introduce into the well-stirred mixture 92 g. (50 ml.) of concentrated sulphuric acid. The mixture becomes warm and a clear solution results. Surround the beaker with a freezing mixture of ice and salt, and stir the solution mechanically. Support a separatory funnel, containing a cold mixture of 15 -5 g. (11 ml.) of concentrated nitric acid and 12 -5 g. (7 ml.) of concentrated sulphuric acid, over the beaker. When the temperature of the solution falls to 0-2°, run in the acid mixture gradually while the temperature is maintained below 10°. After all the mixed acid has been added, remove the beaker from the freezing mixture, and allow it to stand at room temperature for 1 hour. Pour the reaction mixture on to 250 g. of crushed ice (or into 500 ml. of cold water), whereby the crude nitroacetanilide is at once precipitated. Allow to stand for 15 minutes, filter with suction on a Buchner funnel, wash it thoroughly with cold water until free from acids (test the wash water), and drain well. Recrystallise the pale yellow product from alcohol or methylated spirit (see Section IV,12 for experimental details), filter at the pump, wash with a httle cold alcohol, and dry in the air upon filter paper. [The yellow o-nitroacetanihde remains in the filtrate.] The yield of p-nitroacetanihde, a colourless crystalline sohd of m.p. 214°, is 20 g. [Pg.581]

Dissolve 3-5 g. of aniline hydrochloride in 20 ml. of absolute ethyl alcohol contained in a 50 ml. conical flask, and add 0-5 ml. of a saturate solution of hydrogen chloride in absolute ethyl alcohol. Cool in ice and add 4 g. (4 -6 ml.) of iso-amyl nitrite (compare Section 111,53) gradually. Allow the mixture to stand for 5-10 minutes at the room temperature, and precipitate the diazonium salt by the gradual addition of ether. Filter ofiF the crystals at the pump on a small Buchner funnel, wash it with 5 ml. of alcohol - ether (1 1), and then with 10 ml. of ether. Keep... [Pg.597]

In a 1 5 or 2-Utre rovmd-bottomed flask, prepare cuprous chloride from 105 g. of crystallised copper sulphate as detailed in Section 11,50,1. Either wash the precipitate once by decantation or filter it at the pump and wash it with water containing a httle sulphurous acid dissolve it in 170 ml. of concentrated hydrochloric acid. Stopper the flask loosely (to prevent oxidation) and cool it in an ice - salt mixture whilst the diazo-tisation is being carried out. [Pg.600]

Dissolve 36 g. of p-toluidine in 85 ml. of concentrated hydrochloric acid and 85 ml. of water contained in a 750 ml. conical flask or beaker. Cool the mixture to 0° in an ice-salt bath with vigorous stirring or shaking and the addition of a httle crushed ice. The salt, p-toluidine hydrochloride, will separate as a finely-divided crystalline precipitate. Add during 10-15 minutes a solution of 24 g. of sodium nitrite in 50 ml. of water (1) shake or stir the solution well during the diazotisation, and keep the mixture at a temperature of 0-5° by the addition of a httle crushed ice from time to time. The hydrochloride wUl dissolve as the very soluble diazonium salt is formed when ah the nitrite solution has been introduced, the solution should contain a trace of free nitrous acid. Test with potassium iodide - starch paper (see Section IV,60). [Pg.600]

Difluorodiphenyl. Bis-diazotise a solution of 46 g. of benzidine (Section IV,88) in 150 ml. of concentrated hydrochloric acid and 150 ml. of water by means of a solution of 35 g. of sodium nitrite in 60 ml. of water add about 200 g. of crushed ice during the process (compare p-Fbtorotoluene above). Filter the solution and add it to a filtered solution of 85 g. of sodium borofluoride in 150 ml. of water. Stir for several minutes, collect the precipitated bis-diazonium borofluoride by suction filtration, wash with 5 ml. of ice-cold water, and dry at 90-100°. Place the dry salt in a flask fitted with an air condenser, immerse the flask in an oil bath, and slowly raise the temperature to 150° (Fume Cupboard ). When decomposition of the salt is complete, steam distil the mixture collect the 4 4 difluoro-diphenyl which passes over and recrystallise it from ethanol. The yield is 21 g., m.p. 92-93°. [Pg.612]

Place 45 g. (43 ml.) of benzal chloride (Section IV,22), 250 ml. of water and 75 g. of precipitated calcium carbonate (1) in a 500 ml. round-bottomed flask fltted with a reflux condenser, and heat the mixture for 4 hours in an oil bath maintained at 130°. It is advantageous to pass a current of carbon dioxide through the apparatus. Filter off the calcium salts, and distil the filtrate in steam (Fig. II, 40, 1) until no more oil passes over (2). Separate the benzaldehyde from the steam distillate by two extractions with small volumes of ether, distil off most of the ether on a water bath, and transfer the residual benzaldehyde to a wide-mouthed bottle or flask. Add excess of a concentrated solution of sodium bisulphite in portions with stirring or shaking stopper the vessel and shake vigorously until the odour of benzaldehyde can no longer be detected. Filter the paste of the benzaldehyde bisulphite compound at the pump... [Pg.693]

Sodium hydroxide solution cannot be used at this stage since it may produce benzoic acid by the Cannizzaro reaction (Section IV,123) from any unchanged benzaldehyde. If, however, the reaction mixture is diluted with 3-4 volumes of water, steam distilled to remove the unreacted benzaldehyde, the residue may then be rendered alkaline with sodium hydroxide solution. A few grams of decolourising carbon are added, the mixture boiled for several minutes, and filtered through a fluted filter paper. Upon acidifying carefully with concentrated hydrochloric acid, cinnamic acid is precipitated. This is collected, washed and purified as above. [Pg.713]

In a 500 ml. wide-mouthed reagent bottle place a cold solution of 25 g. of sodium hydroxide in 250 ml. of water and 200 ml. of alcohol (1) equip the bottle with a mechanical stirrer and surround it with a bath of water. Maintain the temperature of the solution at 20-25°, stir vigorously and add one-half of a previously prepared mixture of 26-5 g. (25 -5 ml.) of purebenzaldehyde (Section IV,115) and 7 -3 g. (9-3 ml.) of A.R. acetone. A flocculent precipitate forms in 2-3 minutes. After 15 minutes add the remainder of the benzaldehyde - acetone mixture. Continue the stirring for a further 30 minutes. Filter at the pump and wash with cold water to eliminate the alkali as completely as possible. Dry the solid at room temperature upon filter paper to constant weight 27 g. of crude dibenzalacetone, m.p. 105-107°, are obtained. Recrystallise from hot ethyl acetate (2-5 ml. per gram) or from hot rectified spirit. The recovery of pure dibenzalacetone, m.p. 112°, is about 80 per cent. [Pg.717]

Oximes (compare Section III,74,B). The following procedure has wide application. Dissolve 0-5 g. of hydroxylamine hydrochloride in 2 ml. of water, add 2 ml. of 10 per cent, sodium hydroxide solution and 0-2 g. of the aldehyde (or ketone). If the latter is insoluble, add just sufficient alcohol to the mixture to give a clear solution. Heat the mixture under reflux for 10-15 minutes, and then cool in ice. If crystals separate, filter these off, and recrystallise from alcohol, dilute alcohol, benzene or light petroleum (b.p. 60-80°). If no solid separates on cooling, dilute with 2-3 volumes of water, filter the precipitated sohd, and recrystallise. [Pg.721]


See other pages where Section 4.7 Precipitation is mentioned: [Pg.397]    [Pg.143]    [Pg.39]    [Pg.126]    [Pg.337]    [Pg.606]    [Pg.339]    [Pg.361]    [Pg.237]    [Pg.250]    [Pg.253]    [Pg.258]    [Pg.305]    [Pg.326]    [Pg.454]    [Pg.479]    [Pg.542]    [Pg.550]    [Pg.580]    [Pg.584]    [Pg.600]    [Pg.604]    [Pg.607]    [Pg.609]    [Pg.611]    [Pg.615]    [Pg.618]    [Pg.623]    [Pg.641]    [Pg.668]    [Pg.700]    [Pg.702]    [Pg.703]    [Pg.704]    [Pg.715]    [Pg.717]   


SEARCH



Bus Section Failures in Electrostatic Precipitators

© 2024 chempedia.info