Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample preparation filtration

As stated by Manz, the pTAS was envisioned as a new concept for chemical sensing, needed since sensors at that time were not providing the best results in terms of selectivity and lifetime. Initially, the main reason for miniaturisation was to enhance the analytical performance of the device rather than to reduce its size. However, it was also recognised that a small scale presented the advantage of a smaller consumption of sample and reagents. Moreover, the total chemical analysis system scheme could provide an integration of several laboratory procedures such as sample preparation, filtration, preconcentration,... [Pg.827]

Microfluidic systems are based on Total Analysis System (TAS), which aims to diminish and accumulate all steps of analysis of a sample onto a single device (Guo et al., 2015). This system has to have driving equipment like pumps and reactors and necessary parts of the chemical processes like sample preparation, filtration, dilution, reaction, and detection (Guo et al., 2015 Connelly et al., 2012). Meanwhile, the miCToflnidic analytical platform. Micro Total Analysis System (pTAS), means a single miCTometer chip that contains the whole laboratory (Guo et al., 2015 Dittrich et al., 2006 Kovarik et al., 2013). [Pg.282]

Reduction of 17a-EthynyI to 17a-Ethyl °° A solution of 5 g of 17a-ethynyl-androst-5-ene-3j9,17j5-diol in 170 ml of absolute alcohol is hydrogenated at atmospheric pressure and room temperature using 0.5 g of 5 % palladium-on-charcoal catalyst. Hydrogen absorption is complete in about 8 min with the absorption of 2 moles. After removal of the catalyst by filtration, the solvent is evaporated under reduced pressure and the residue is crystallized from ethyl acetate. Three crops of 17a-ethylandrost-5-ene-3) ,17j9-diol are obtained 3.05 g, mp 197-200° 1.59 g, mp 198.6-200.6° and 0.34 g, mp 196-199° (total yield 5.02 g, 90%). A sample prepared for analysis by recrystallization from ethyl acetate melts at 200.6-202.4° [aj, —70° (diox.). [Pg.163]

This sample preparation involved, firstly, an extraction and the elimination of the solid matrix by filtration and, secondly, a concentration procedure employing a solid phase extraction cartridge. The compounds of interest were separated solely by dispersive interactions with the reversed phase. In the example given, the corn meal was spiked with the aflatoxins. [Pg.217]

SFE-GC-MS is particularly useful for (semi)volatile analysis of thermo-labile compounds, which degrade at the higher temperatures used for HS-GC-MS. Vreuls et al. [303] have reported in-vial liquid-liquid extraction with subsequent large-volume on-column injection into GC-MS for the determination of organics in water samples. Automated in-vial LLE-GC-MS requires no sample preparation steps such as filtration or solvent evaporation. On-line SPE-GC-MS has been reported [304], Smart et al. [305] used thermal extraction-gas chromatography-ion trap mass spectrometry (TE-GC-MS) for direct analysis of TLC spots. Scraped-off material was gradually heated, and the analytes were thermally extracted. This thermal desorption method is milder than laser desorption, and allows analysis without extensive decomposition. [Pg.470]

GC, utilizing flame ionization detection (FID), has been used to measure diisopropyl methylphosphonate in meat, grain, or milk (Caton et al. 1994). Sample preparation steps include homogenization, filtration, dialysis, and extraction on a solid sorbent. Two common solid phase extractants, Tenax GC and octadecylsilane bonded silica gel (C18 Silica), were compared by Caton et al. (1994). They reported 70% recovery when using Tenax GC and 85% recovery when using C18 Silica. Sensitivity was not reported. Equilibrium experiments indicate that 8-10 mg of Tenax GC are required to achieve maximum recovery of each g of diisopropyl methylphosphonate (Caton et al. 1994). By extrapolating these... [Pg.130]

A 200 g sample, prepared by addition of substrate to mixed acid, followed by quenching into water, filtration and washing, decomposed vigorously at a late stage of drying in a vacuum oven, which was pressurised and the seal forced open. This behaviour might have been due to inadequate washing and residual sulfuric acid. [Pg.490]

Several limitations on the synthetic techniques that can be employed are imposed by the need for rapidity and minimization of handling because of the radiation hazard, and the low concentration and small physical quantities of the compounds. Purification steps should be eliminated if possible by optimizing yields. Where purification is unavoidable, simple procedures are employed such as use of anion exchange columns to remove perrhenate (the most common contaminant in the final product). A variety of disposable sample preparation columns are well suited to this purpose and are available containing small quantities of anion or cation exchange materials (0.1 to 0.5 g typically) such as quaternary ammonium-, primary ammonium-, or sulfonate-derivatized silica. Reversed phase columns are also often used (C8 or C18-derivatized silica). The purification is often thus reduced to a simple filtration step which can be performed aseptically. [Pg.132]

Over thirty different elements have been determined in medical and biological materials by atomic absorption spectroscopy. The popularity of the technique is due to a number of factors, including sensitivity, selectivity, and ease of sample preparation. With biological fluids, often no preparation at all is required. The techniques employed usually involve simple dilution of the sample with water or with an appropriate reagent to eliminate interference. Alternatively, the element to be determined is separated by solvent extraction. Either an untreated sample, a protein free filtrate, or an ashed sample is extracted. [Pg.86]

Figure 6.27 presents the sample preparation process. Accurate and reproducible control of the depth of the autosampler needles permitted the sampling of the supernatant solution without perturbing the precipitate, thus avoiding the need for sample filtration, as shown in Figure 6.28. Of course, a step could be added to sample preparation to filter the solutions prior to analysis. Figure 6.27 presents the sample preparation process. Accurate and reproducible control of the depth of the autosampler needles permitted the sampling of the supernatant solution without perturbing the precipitate, thus avoiding the need for sample filtration, as shown in Figure 6.28. Of course, a step could be added to sample preparation to filter the solutions prior to analysis.
Typical protein precipitation procedures use one volume of plasma plus three to six volumes of acetonitrile or methanol (or a mixture) with the internal standard at an appropriate concentration for the assay. Poison et al.102 reported that protein precipitation using acetonitrile eliminates at least 95% of the proteins after filtration or centrifugation, the supernatant can often be directly injected into the HPLC/MS/MS system. Usually this step is performed using 96-well plates that are ideal for semi-automation of sample preparation. Briem et al.103 reported on a robotic sample preparation system for plasma based on a protein precipitation step and a robotic liquid handling system that increased throughput by a factor of four compared to a manual system. [Pg.212]

Most manufacturers of dissolution testing devices offer semi-automated systems that can perform sampling, filtration, and UV reading or data collection. These systems automate only a single test at a time. Fully automated systems typically automate entire processes including media preparation, media dispensing, tablet or capsule drop, sample removal, filtration, sample collection or analysis (via direct connection to spectrophotometers or HPLCs), and wash cycles. A fully automated system allows automatic performance of a series of tests to fully utilize unused night and weekend instrument availability. [Pg.271]

Retention of a protein or protein activity after 105,000y, 1 hr Chromatography on gel filtration columns with large pore sizes Electron microscopy—however, sample preparation may partially reconstitute membranes Decrease in solution turbidity, which may be detected by a diminution in light scattering or an enhancement in light transmission Diffusion of membrane lipids as assayed by nuclear magnetic resonance and electron spin resonance... [Pg.185]

The usual way to get information on wastewater quality is first sampling using an autosampler and then transportation of samples to the laboratory for analysis. Between sampling and analysis, several steps are needed storage/condi-tioning, transportation, preparation (filtration, pre-concentration, cleanup,...). [Pg.249]

In analysing the caffeine of energy drinks, an accurately weighed amount of 15 mL of sample to 50 mL volumetric flask containing 25 mL water. Two milliliters of basic lead acetate solution was added to this solution and diluted the mark with distilled water. After filtering, 25 mL of filtrate was taken and 0.25 g of NaHCOj was added to this solution. Then, the solution was filtered. Five milliliters of filtrate was transferred to a 25 mL volumetric flask and adjusted to volume with distilled water. The peak amplitudes of the first-derivative spectra was measured at 287 and 260 nm. The sample preparation procedure was also used for PLS-1 method and the absorbances of this solution were recorded between 240-320 mn. [Pg.293]

Fort he determination of preservatives and sweeteners in soft drinks or fruit juices LC analysis with UV detection is widely used. The sample pretreatment, prior to LC analysis, often consists only of degassing, filtration and dilution of the Uqirid [2]. Sometimes a Uqirid-Uqitid extraction, suitable not only for soft drinks but also for more complex matrices, is appUed [3]. Chemometric methods appUed to overlapped spectra offer the advantage of minimizing or eliminating sample preparation by allowing to simirltaneoirsly determining one or more analytes in relatively complex matrices. [Pg.300]

This chapter provides the novice and the experienced analyst with an overview of sample preparation techniques focusing on solid dosage forms. It describes the best practices in the dilute and shoot approach, and the tricks of the trade in grinding, mixing, sonication, dilution and filtration of drug products. Selected case studies of sample preparations for assays and impurity testing are used to illustrate the strategies, trade-offs... [Pg.123]

FIGURE I The common sequence of sample preparation steps for drug products grinding — extraction —> dilution — filtration. [Pg.125]

However, the solution obtained after denaturation might include, depending on the application, other components besides the liberated marker ( matrix ). If a small amount of target material is used in the binding assay, the quantity of remaining matrix will be so low that it hardly disturbs the quantitation and the sample can be measured directly by LC-MS without further sample preparation (e.g. membrane filtration or solid phase extraction [78]). [Pg.268]


See other pages where Sample preparation filtration is mentioned: [Pg.211]    [Pg.211]    [Pg.282]    [Pg.221]    [Pg.413]    [Pg.111]    [Pg.52]    [Pg.53]    [Pg.182]    [Pg.533]    [Pg.131]    [Pg.28]    [Pg.201]    [Pg.35]    [Pg.219]    [Pg.234]    [Pg.195]    [Pg.174]    [Pg.416]    [Pg.173]    [Pg.350]    [Pg.19]    [Pg.172]    [Pg.386]    [Pg.4]    [Pg.5]    [Pg.169]    [Pg.429]    [Pg.433]   
See also in sourсe #XX -- [ Pg.19 , Pg.20 ]




SEARCH



Sample filtration

© 2024 chempedia.info