Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample activation analysis

A stable activable tracer (SAT) is a stable material that is injected into a system under study and whose concentration in the system is measured by a post sampling activation analysis. The advantages of such "artificiar tracers as compared with the naturally occurring trace elements in various systems (which act as natural tracers) are as follows artificial tracers have a controlled emission rate (either pulse or continuous injection) and control of the amoimt injected, both of which are valuable in model validation studies they can be injected in amounts suflBcient to ensure easy detection in the system under study and they lend themselves better to simultaneous tracing of several similar pollutant sources. [Pg.524]

Channell, J. K., and P. Kruger. 1969. Post-sampling activation analysis of stable nuclides for estuary water tracing, pp. 81-86. In Modern Trends in Activation Analysis, Vol. 1 (J. R. DeVoe and P. D. LaFleur, eds.). U.S. National Bureau of Standards Rep. NBS-Spec. Publ.-312. [Pg.283]

Neutron Activation Analysis Few samples of interest are naturally radioactive. For many elements, however, radioactivity may be induced by irradiating the sample with neutrons in a process called neutron activation analysis (NAA). The radioactive element formed by neutron activation decays to a stable isotope by emitting gamma rays and, if necessary, other nuclear particles. The rate of gamma-ray emission is proportional to the analyte s initial concentration in the sample. For example, when a sample containing nonradioactive 13AI is placed in a nuclear reactor and irradiated with neutrons, the following nuclear reaction results. [Pg.645]

The concentration of Mn in steel can be determined by a neutron activation analysis using the method of external standards. A 1.000-g sample of an unknown steel sample and a 0.950-g sample of a standard steel known to contain 0.463% w/w Mn, are irradiated with neutrons in a nuclear reactor for 10 h. After a 40-min cooling period, the activities for gamma-ray emission were found to be 2542 cpm (counts per minute) for the unknown and 1984 cpm for the standard. What is the %w/w Mn in the unknown steel sample ... [Pg.646]

Trace-element analysis of metals can give indications of the geographic provenance of the material. Both emission spectroscopy (84) and activation analysis (85) have been used for this purpose. Another tool in provenance studies is the measurement of relative abundances of the lead isotopes (86,87). This technique is not restricted to metals, but can be used on any material that contains lead. Finally, for an object cast around a ceramic core, a sample of the core material can be used for thermoluminescence dating. [Pg.421]

Health and Safety. Petroleum and oxygenate formulas are either flammable or combustible. Flammables must be used in facUities that meet requirements for ha2ardous locations. Soak tanks and other equipment used in the removing process must meet Occupational Safety and Health Administration (OSHA) standards for use with flammable Hquids. Adequate ventilation that meets the exposure level for the major ingredient must be attained. The work environment can be monitored by active air sampling and analysis of charcoal tubes. [Pg.551]

Comprehensive accounts of the various gravimetric, polarographic, spectrophotometric, and neutron activation analytical methods have been pubHshed (1,2,5,17,19,65—67). Sampling and analysis of biological materials and organic compounds is treated in References 60 and 68. Many analytical methods depend on the conversion of selenium in the sample to selenous acid, H2Se02, and reduction to elemental selenium when a gravimetric deterrnination is desired. [Pg.335]

Thermal neutron activation analysis has been used for archeological samples, such as amber, coins, ceramics, and glass biological samples and forensic samples (see Forensic chemistry) as weU as human tissues, including bile, blood, bone, teeth, and urine laboratory animals geological samples, such as meteorites and ores and a variety of industrial products (166). [Pg.252]

MetaUic impurities in beryUium metal were formerly determined by d-c arc emission spectrography, foUowing dissolution of the sample in sulfuric acid and calcination to the oxide (16) and this technique is stUl used to determine less common trace elements in nuclear-grade beryUium. However, the common metallic impurities are more conveniently and accurately determined by d-c plasma emission spectrometry, foUowing dissolution of the sample in a hydrochloric—nitric—hydrofluoric acid mixture. Thermal neutron activation analysis has been used to complement d-c plasma and d-c arc emission spectrometry in the analysis of nuclear-grade beryUium. [Pg.69]

Because of the increasing emphasis on monitoring of environmental cadmium the detemiination of extremely low concentrations of cadmium ion has been developed. Table 2 Hsts the most prevalent analytical techniques and the detection limits. In general, for soluble cadmium species, atomic absorption is the method of choice for detection of very low concentrations. Mobile prompt gamma in vivo activation analysis has been developed for the nondestmctive sampling of cadmium in biological samples (18). [Pg.393]

Instiximental neutron activation analysis (INAA) is considered the most informative and highly sensitive. Being applied, it allows detecting and determination of 30-40 elements with the sensitivity of 10 -10 g/g in one sample. The evident advantage of INAA is the ability to analyze samples of different nature (filters, soils, plants, biological tests, etc.) without any complex schemes of preliminai y prepai ation. [Pg.77]

Thorinm-232 is the only non-radiogenic thorium isotope of the U/Th decay series. Thorinm-232 enters the ocean by continental weathering and is mostly in the particulate form. Early measurements of Th were by alpha-spectrometry and required large volume samples ca. 1000 T). Not only did this make sample collection difficult, but the signal-to-noise ratio was often low and uncertain. With the development of a neutron activation analysis " and amass spectrometry method " the quality of the data greatly improved, and the required volume for mass spectrometry was reduced to less than a liter. Surface ocean waters typically have elevated concentrations of dissolved and particulate 17,3 7,62... [Pg.46]

The chemical composition of particulate pollutants is determined in two forms specific elements, or specific compounds or ions. Knowledge of their chemical composition is useful in determining the sources of airborne particles and in understanding the fate of particles in the atmosphere. Elemental analysis yields results in terms of the individual elements present in a sample such as a given quantity of sulfur, S. From elemental analysis techniques we do not obtain direct information about the chemical form of S in a sample such as sulfate (SO/ ) or sulfide. Two nondestructive techniques used for direct elemental analysis of particulate samples are X-ray fluorescence spectroscopy (XRF) and neutron activation analysis (NAA). [Pg.205]

Nitronium tetrafluoroborate is very hygroscopic. It is stable as long as it is anhydrous, but it is decomposed by moisture, and all transfers should be in a dry box. Its purity can be checked by conventional elemental analysis. However, because of the hygroscopic nature of the salt, the submitters have found it convenient to use neutron activation analysis (B, F, N, O) of samples... [Pg.59]

Radioactive nuclei are used extensively in chemical analysis. One technique of particular importance is neutron activation analysis. This procedure depends on the phenomenon of induced radioactivity. A sample is bombarded by neutrons, bringing about such reactions as... [Pg.516]

In the modern forensic chemistry laboratory (Figure B) arsenic is detected by analysis of hair samples, where the element tends to concentrate in chronic arsenic poisoning. A single strand of hair is sufficient to establish the presence or absence of the element. The technique most commonly used is neutron activation analysis, described in Chapter 19. If the concentration found is greater than about 0.0003%, poisoning is indicated normal arsenic levels are much lower than this. [Pg.573]

Radioactivity. Methods based on the measurement of radioactivity belong to the realm of radiochemistry and may involve measurement of the intensity of the radiation from a naturally radioactive material measurement of induced radioactivity arising from exposure of the sample under investigation to a neutron source (activation analysis) or the application of what is known as the isotope dilution technique. [Pg.9]

Comparison of Various FNAA Techniques for Assay of Synthetic Octol Samples Precision of Single-Axis Rotation FNAA for Assay of Octol Plant Samples Fast Neutron Activation Analysis for Nitrogen in Explosives by... [Pg.7]

A modem technique for nitrogen detn is known as fast neutron activation analysis. Materials such as RDX are exposed to a high density fast neutron flux which converts the 14N content of the sample into unstable 13N. The N is detd by measuring the 13 N produced by the 14N (n, 2n) 13N reaction. This technique is extremely sensitive, but requires specialized instrumentation (Refs 44, 51 61)... [Pg.302]

Nuclear activation analysis (NAA) is a method for qualitatively and quantitatively detg elemental compn by means of nuclear transmutations. The method involves the irradiation or bombardment of samples with nuclear particles or high-energy electromagnetic radiation for the specific purpose of creating radioactive isotopes from the stable or naturally-occurring elements present. From the numbers, types and quantities of radioactive elements or radionuclides, it is possible to deduce information about the elemental compn of the original sample... [Pg.356]

This feasibility study shows that determination of pellet wt by fast neutron oxygen activation analysis can be used for quality assurance inspection of M34 primers. Either direct oxygen analysis, where a comparison standard (such as lucite) is used, or a ratio method, utilizing the Cu in the cup-anvil combination as an internal standard, can be applied. In general, the uniformity of production primers is quite satisfactory, as is usually the case where production procedures are standardized. It seems likely that the light pellet is one which has been improperly manufd and will probably be well below specifications in pellet wt. Production experience with such primers indicates that only one in 3x10s primers is expected to show low pellet wt therefore, one would not expect to find a reject in a small sampling. Nevertheless, detection and rejection of this one bad unit is critical for the prevention of weapon malfunctions and possible injuries to personnel... [Pg.368]

A Del Electronics, Model ESP-100A, electrostatic precipitator was used for sample collection. Cigarette smoke particles were found to give approx the same particle distribution pattern on the collection filter paper as the gunshot residue, and since the smoke stains the paper, this provided a v rapid technique for optimizing operation conditions. With a flow rate of 15cfm and a corona current of 125 uA, the residue collects primarily on a narrow band across the sample paper. Samples were collected on Whatman No 1541 filter paper which lined the inside of the sample collection tube. The presence of this paper allowed air to flow only thru the center of the tube, so particle collection was made upon the filter paper exclusively. The filter paper samples were pelletized prior to neutron activation analysis... [Pg.376]

This section will deal briefly with some aspects of expls safety peculiar to neutron activation analysis expts. We are concerned here with a) the possible effect of the ionizing radiation dose on the energetic material which will cause it to be more sensitive or hazardous to normal handling as an expl, and b) the potential direct expl hazards involved in the physical and mechanical transportation of samples to and horn the irradiation source and in a nuclear counting system... [Pg.387]

Although sophisticated methods may constitute the core methods for certification it is useful to include good, well executed routine methods. In order to further minimize systematic error, a conscious purposeful attempt should be made to get methods and procedures with wide-ranging and different sample preparation steps, including no decomposition as in instrumental neutron activation analysis and particle induced X-ray emission spectrometry. [Pg.56]

Byrne AR, and Kucera J (1991) Radiochemical neutron activation analysis of traces of vanadium in biological samples A comparison of prior dry ashing with post-irradiation wet ashing. Fresenius f Anal Chem 340 48-52. [Pg.101]


See other pages where Sample activation analysis is mentioned: [Pg.586]    [Pg.416]    [Pg.423]    [Pg.524]    [Pg.323]    [Pg.425]    [Pg.141]    [Pg.70]    [Pg.51]    [Pg.671]    [Pg.673]    [Pg.170]    [Pg.236]    [Pg.516]    [Pg.226]    [Pg.256]    [Pg.358]    [Pg.33]    [Pg.63]    [Pg.69]    [Pg.138]    [Pg.223]    [Pg.239]    [Pg.112]   
See also in sourсe #XX -- [ Pg.776 ]




SEARCH



Activation analysis comparator samples

Activation analysis sample irradiation

Activation analysis sample preparation

Active sampling

Active sampling, trace analysis

Sample analysis activity

Sample analysis activity

The Collection of Drainage Samples for Environmental Analyses from Active Stream Channels

© 2024 chempedia.info