Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample analysis activity

Solution preparation, standardization, and sample analysis activities all involve solution concentration. Let us review molarity and normality as methods of expressing solution concentration. [Pg.67]

The role of analytical technologies traditionally has been to respond to a pharmaceutical event, rather than to lead one. A complementary perspective from an analytical point of view can provide substantial insight into relevant drug development issues. This insight may not be intuitively obvious from a sample-generating (i.e., chemistry, biology) approach. And, when sample analysis activities are taken into consideration as an equal partner with sample-generating... [Pg.11]

Drug development has become more complex and highly competitive while the sample analysis contributions have become increasingly important. This perspective recognizes the impact of sample analysis activities and the corresponding information that must be accumulated throughout the various stages of development. [Pg.12]

Since the enzyme activity is pH and temperature dependent, these factors must be controlled during assay development and sample analysis. Activity strongly decreases outside the pH optima thus, buffer pH is especially important during the enzymatic reaction. Although commercially prepared buffers are optimized for the activity of the detection enzyme, it is nonetheless important to understand the pH requirement. For example, the AP from Escherichia coli is optimally active at approximately pH 8, whereas AP from calf intestine is most active at approximately pH 10. HRP is active within the pH range of 4 8 with an optimum at approximately pH 7.0 [8],... [Pg.55]

Direct Analysis of Radioactive Analytes The concentration of a long-lived radioactive isotope is essentially constant during the period of analysis. As shown in Example 13.6, the sample s activity can be used to calculate the number of radioactive particles that are present. [Pg.644]

Radiometry. Radiometry is the measurement of radiant electromagnetic energy (17,18,134), considered herein to be the direct detection and spectroscopic analysis of ambient thermal emission, as distinguished from techniques in which the sample is actively probed. At any temperature above absolute zero, some molecules are in thermally populated excited levels, and transitions from these to the ground state radiate energy at characteristic frequencies. Erom Wien s displacement law, T = 2898 //m-K, the emission maximum at 300 K is near 10 fim in the mid-ir. This radiation occurs at just the energies of molecular rovibrational transitions, so thermal emission carries much the same information as an ir absorption spectmm. Detection of the emissions of remote thermal sources is the ultimate passive and noninvasive technique, requiring not even an optical probe of the sampled volume. [Pg.315]

The sampling of solution for activity measurement is carried out by filtration with 0.22 pm Millex filter (Millipore Co.) which is encapsuled and attached to a syringe for handy operation. The randomly selected filtrates are further passed through Amicon Centriflo membrane filter (CF-25) of 2 nm pore size. The activities measured for the filtrates from the two different pore sizes are observed to be identical within experimental error. Activities are measured by a liquid scintillation counter. For each sample solution, triplicate samplings and activity measurements are undertaken and the average of three values is used for calculation. Absorption spectra of experimental solutions are measured using a Beckman UV 5260 spectrophotometer for the analysis of oxidation states of dissolved Pu ions. [Pg.317]

At 3 and 6% by vol. industrial waste combination, slight to no biological inhibition was caused either to the fixed-film or activated sludge system. The results of sample analysis from the inhibitory runs showed that in two of the three cases, the possible cause of inhibition was the... [Pg.354]

These techniques are designed to minimize both the actual working time, required and the analytical uncertainties in sample analysis. Sample preparation and neutron activation procedures are based on proved analytical and microanalytical techniques. The unusually high sensitivity, reliability, and accuracy are achieved through a choice of optimum irradiation and counting times for the y-ray detection systems. [Pg.128]

One of the key steps in any isotope dilution analysis concerns the isolation and purification of the diluted activity, plus the measurement of its specific activity. Two techniques are usually preferred for the separation precipitation and solvent extraction. As a purification step, precipitation has the advantage that the precipitate can easily be weighed at the time of separation, thereby allowing a quick determination of the specific activity. The main problem with the use of precipitation techniques involves the occurrence of co-precipitation phenomena, in which unwanted materials are precipitated along with the desired substance, thus altering the sample specific activity. Precipitation techniques are used for the isolation of inorganic components. [Pg.124]

Rancidity measurements are taken by determining the concentration of either the intermediate compounds, or the more stable end products. Peroxide values (PV), thiobarbituric acid (TBA) test, fatty acid analysis, GC volatile analysis, active oxygen method (AOM), and sensory analysis are just some of the methods currently used for this purpose. Peroxide values and TBA tests are two very common rancidity tests however, the actual point of rancidity is discretionary. Determinations based on intermediate compounds (PV) are limited because the same value can represent two different points on the rancidity curve, thus making interpretations difficult. For example, a low PV can represent a sample just starting to become rancid, as well as a sample that has developed an extreme rancid characteristic. The TBA test has similar limitations, in that TBA values are typically quadratic with increasing oxidation. Due to the stability of some of the end-products, headspace GC is a fast and reliable method for oxidation measurement. Headspace techniques include static, dynamic and solid-phase microextraction (SPME) methods. Hexanal, which is the end-product formed from the oxidation of Q-6 unsaturated fatty acids (linoleate), is often found to be a major compound in the volatile profile of food products, and is often chosen as an indicator of oxidation in meals, especially during the early oxidative changes (Shahidi, 1994). [Pg.535]

Active filters use active conditioning to compensate for harmonic currents in a power system. Figure 4.23 shows an active filter applied in a harmonic environment. The filter samples the distorted current and, using power electronic switching devices, draws a current from the source of such magnitude, frequency composition, and phase shift to cancel the harmonics in the load. The result is that the current drawn from the source is free of harmonics. An advantage of active filters over passive filters is that the active filters can respond to changing load and harmonic conditions, whereas passive filters are fixed in their harmonic response. As we saw earlier, application of passive filters requires careful analysis. Active filters have no serious ill effects associated with them. However, active filters are expensive and not suited for application in small facilities. [Pg.117]

At the top of the data collection pyramid shown in Figure 5.1 is assessment. By the time the data collection process enters assessment, its third and final phase, the provisions made in the planning phase have been already implemented in the field and at the laboratory as the requirements for sampling, analysis, and QA/QC activities. In the assessment phase, by conducting Task 6—Data Evaluation and Task 7—Data Quality Assessment, we will establish whether the collected data are valid, relevant, and may be used for project decisions. [Pg.265]

Species distribution studies have shown that trace element (e.g. metals) concentrations in soils and sediments vary with physical location (e.g. depth below bed surface) and with particle size. In these speciation studies the total element content of each fraction was determined using a suitable trace element procedure, for example, solid sample analysis by X-ray emission spectroscopy or neutron activation analysis, or alternatively by dissolution of sample and analysis by ICPOES, AAS or ASV. The type of sample fraction analysed can vary, and a few... [Pg.13]


See other pages where Sample analysis activity is mentioned: [Pg.28]    [Pg.124]    [Pg.28]    [Pg.124]    [Pg.143]    [Pg.236]    [Pg.516]    [Pg.382]    [Pg.319]    [Pg.81]    [Pg.23]    [Pg.71]    [Pg.347]    [Pg.367]    [Pg.144]    [Pg.276]    [Pg.81]    [Pg.60]    [Pg.58]    [Pg.123]    [Pg.268]    [Pg.1058]    [Pg.51]    [Pg.168]    [Pg.169]    [Pg.284]    [Pg.394]    [Pg.278]    [Pg.233]    [Pg.689]    [Pg.7]    [Pg.217]    [Pg.102]    [Pg.58]    [Pg.2]    [Pg.3]    [Pg.63]    [Pg.65]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Activation analysis comparator samples

Activation analysis sample irradiation

Activation analysis sample preparation

Active sampling

Active sampling, trace analysis

Sample activation analysis

Sample activation analysis

The Collection of Drainage Samples for Environmental Analyses from Active Stream Channels

© 2024 chempedia.info