Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Third monomer

Ethylene—Propylene Rubber. Ethylene and propjiene copolymerize to produce a wide range of elastomeric and thermoplastic products. Often a third monomer such dicyclopentadiene, hexadiene, or ethylene norbomene is incorporated at 2—12% into the polymer backbone and leads to the designation ethylene—propylene—diene monomer (EPDM) mbber (see Elastomers, synthetic-ethylene-propylene-diene rubber). The third monomer introduces sites of unsaturation that allow vulcanization by conventional sulfur cures. At high levels of third monomer it is possible to achieve cure rates that are equivalent to conventional mbbers such as SBR and PBD. Ethylene—propylene mbber (EPR) requires peroxide vulcanization. [Pg.232]

EPDM is a terpolymer of ethylene, propylene, and a small amount (<10%) of an unsaturated diene third monomer to provide a cure site. Unlike the elastomers previously discussed, the unsaturation in EPDM is not in the main chain, but it is pendent to the chain. Peroxide cure gives superior aging resistance and low compression set. [Pg.241]

Synthetic. The main types of elastomeric polymers commercially available in latex form from emulsion polymerization are butadiene—styrene, butadiene—acrylonitrile, and chloroprene (neoprene). There are also a number of specialty latices that contain polymers that are basically variations of the above polymers, eg, those to which a third monomer has been added to provide a polymer that performs a specific function. The most important of these are products that contain either a basic, eg, vinylpyridine, or an acidic monomer, eg, methacrylic acid. These latices are specifically designed for tire cord solutioning, papercoating, and carpet back-sizing. [Pg.253]

High heat ABS resins are produced by adding a third monomer to the styrene and acrylonitrile to stiffen the polymer backbone, thus raising the T. Two monomers used commercially for this purpose are a-methylstyrene (85) and /V-pheny1ma1eimide (86). [Pg.509]

Because of the unusual reactivity of the DCPD molecule, there are a number of wide and varying end use areas. The primary uses in the U.S. are DCPD-based unsaturated polyester resins (36%) hydrocarbon type resins, based on DCPD alone or with other reactive olefins (39%) EPDM elastomers via a third monomer ethylidenenorhornene or DCPD (16%) and miscellaneous uses (9%), including polychlorinated pesticides, polyhalogenated flame retardants, and polydicyclopentadiene for reaction injection mol ding (39). [Pg.434]

Elastomers. Ethylene—propylene terpolymer (diene monomer) elastomers (EPDM) use a variety of third monomers during polymerization (see Elastomers, ethyiene-propylene-diene rubber). Ethyhdenenorbomene (ENB) is the most important of these monomers and requires dicyclopentadiene as a precursor. ENB is synthesized in a two step preparation, ie, a Diels-Alder reaction of CPD (via cracking of DCPD) with butadiene to yield 5-vinylbicyclo[2.2.1]-hept-2-ene [3048-64-4] (7) where the external double bond is then isomerized catalyticaHy toward the ring yielding 5-ethyhdenebicyclo[2.2.1]-hept-2-ene [16219-75-3] (ENB) (8) (60). [Pg.434]

In the EPDM polymerization, the double bond of the bicycloheptene ring system of ENB is involved. The amount of third monomers used in any polymerization varies, but it is usually present at less than 10 wt% of the finished polymer. [Pg.434]

The most commonly used third monomer is 5-ethyHdene-2-norbomene [16219-75-3] or ENB ... [Pg.502]

Less commonly used as third monomer is dicyclopentadiene [77-73-6] or DCPD, for which, due to its symmetrical shape, the tendency of the second double bond to take part in the polymeri2ation process is more pronounced than for ENB. This is one of the reasons for the formation of long-chain branches. The resulting product is poly(ethylene- (9-prop54ene- (9-DCPD) [25034-71-3]. [Pg.502]

Using a solution process, the choice of catalyst system is determined, among other things, by the nature of the third monomer and factors such as the width of the mol wt distribution to be realised in the product. A number of articles review the induence of catalyst systems on the stmctural features of the products obtained (3,5—7). The catalyst comprises two main components first, a transition-metal haHde, such as TiCl, VCl, VOCl, etc, of which VOCl is the most widely used second, a metal alkyl component such as (C2H )2A1C1 diethylalurninum chloride, or monoethyl aluminum dichloride, (C2H )AlCl2, or most commonly a mixture of the two, ie, ethyl aluminum sesquichloride, [(C2H )2Al2Cl2]. [Pg.503]

Third Monomers. In order to achieve certain property improvements, nitrile mbber producers add a third monomer to the emulsion polymerization process. When methacrylic acid is added to the polymer stmcture, a carboxylated nitrile mbber with greatly enhanced abrasion properties is achieved (9). Carboxylated nitrile mbber carries the ASTM designation of XNBR. Cross-linking monomers, eg, divinylbenzene or ethylene glycol dimethacrylate, produce precross-linked mbbers with low nerve and die swell. To avoid extraction losses of antioxidant as a result of contact with fluids duriag service, grades of NBR are available that have utilized a special third monomer that contains an antioxidant moiety (10). FiaaHy, terpolymers prepared from 1,3-butadiene, acrylonitrile, and isoprene are also commercially available. [Pg.522]

More recently, in 1975, Du Pont introduced a terpolymer (Vamac) based on ethylene, methyl acrylate and a third monomer of undisclosed composition which contained a carboxylic acid group to provide a cure site for use with peroxides or amines. Both types of rubber exhibit good heat, oxygen and ozone resistance. [Pg.301]

An aqueous ethanol solution of acrylamide, 2,2 -methylenebisacrylamide as cross-linked agent and third acrylamide derivative, is dispersed in an n-alkane. Then three monomers are polymerized to spherical porous gels. The effect of the composition of the third monomer on the exclusion limits of the gel in size-exclusion chromatography has been investigated (82). [Pg.22]

As it is known at present in all countries producing PAN fibres, AN copolymers containing 5—10% of a second monomer are used to increase the elasticity and, in most cases, a third monomer (1-25%) is added to improve the dyeability. [Pg.99]

Triblock copolymers can be prepared from diblock copolymers by a third monomer addition. They can also be prepared using a bis-funetional NMP or ATRP initiator or a bis-RAFT agent (for examples, see Table 9.13). Symmetrical trithiocarbonates (Table 9.15) should also be considered as bis-RAFT agents in... [Pg.546]

Random condensation copolymers can be formed by adding a third monomer to the reaction mix. For example, some 1,4-butanediol might replace some of the ethylene glycol in a PET polymerization. Suppose the three monomers are AMA, BNB, and BZB. The resulting polymer will have a structure such as... [Pg.467]

Blends of EMA copolymer and EPDM containing vinyl norborene as a third monomer were also investigated. Blending was carried out at 180°C at a rotor speed of 100 rpm. After the reaction, the blends were quenched on the cold rolls and were sheeted out. They were examined by IR spectra. The reduction of peak area related to unsaturation indicated a progressive loss of EPDM due to reaction with EMA. The extent of reaction depended on the utilization of unsaturation which is estimated to be 14% for EMA/EPDM at a 70 30 ratio and 53% at a 50 50 blend ratio. The tensile properties exhibit synergism as the EMA proportions change from 0% to 50%. [Pg.326]

Ethylene-propylene-diene terpolymers (EPDM), with their inherent complexity in structural parameters, owe their tensile properties to specific structures dictated by polymerization conditions, among which the controlling factor is the catalyst used in preparing the polymers. However, no detailed studies on correlation between tensile properties and EPDM structures have been published (l,2). An unusual vulcanization behavior of EPDMs prepared with vanadium carboxylates (typified by Vr g, carboxylate of mixed acids of Ccj-Cq) has been recently reported Q). This EPDM attains target tensile properties in 18 and 12 minutes at vulcanization temperatures of 150 and l60°C respectively, while for EPDMs prepared with V0Cl -Et3Al2Cl or V(acac) -Et2AlCl, about 50 and 0 minutes are usually required at the respective vulcanization temperatures, all with dieyclopentadiene (DCPD) as the third monomer and with the same vulcanization recipe. This observation prompted us to inquire into the inherent structural factors... [Pg.195]

So far it has not been possible to determine the distribution of the third monomer units in molecular chains. Yet it is possible to follow the rate of third monomer incorporation in polymerization so as to estimate the heterogeneity of its distribution in the whole polymer. We have previously reported the marked difference in incorporation of DCFD in polymerization with V(acac)3 Et2AlCl and Vc q-Et3Al2Cl -ETGA (3). Figure 8 shows that V. in combination with various alkylaluminum halides and VOCL -Et.Al.Cl are not noticeably different in influencing the incor-pola. uluu of DCED during EEDM polymerization. Thus, difference in... [Pg.202]

Vj g-EPDM and VOCI3-EPDM vulcanizate tensile strength Is not simply explainable by network quality resulting from difference In the third monomer distribution in the terpolymers. [Pg.208]

To circumvent any effect on tensile properties that might have concurred in the presence of the third monomer, hydroperoxide curing of E-P copolymer samples comparable in and... [Pg.208]

Thioureas mainly find use for the vulcanisation of CR, epichlorohydrin (ECO) and some ethylene propylene diene terpolymer (EPDM) compounds. They show high crosslinking activity, with usually adequate compound flow time before onset of the crosslinking. In EPDMs, the thioureas are used as activators for low activity third monomer types and, in the presence of calcium oxide desiccants, in free state vulcanisation of extrudates, etc. The use of thioureas can overcome the retardation caused by the desiccant. In this case some care must be taken otherwise overcompensation may occur. Thioureas are not used in food product applications and are a known health hazard, particularly for pregnant women. [Pg.130]

Figure 1. Illustration of lone electron pair preferences in alcohol dimers, cooperative and anticooperative binding sites for a third monomer, ring strain and steric repulsion in alcohol trimers, alternation of residues in alcohol tetramers, and chain, branch, and cyclic hydrogen bond topologies in larger clusters. Figure 1. Illustration of lone electron pair preferences in alcohol dimers, cooperative and anticooperative binding sites for a third monomer, ring strain and steric repulsion in alcohol trimers, alternation of residues in alcohol tetramers, and chain, branch, and cyclic hydrogen bond topologies in larger clusters.
Another application of an isomerisation reaction can be found in the production of the third monomer that is used in the production of EPDM rubber, an elastomeric polymerisation product of Ethene, Propene and a Diene using vanadium chloride catalysts. The starting diene is made from vinylnorbomene via an isomerisation reaction using a titanium catalyst. The titanium catalyst is made from tetravalent salts and main group hydride reagents, according to patent literature. [Pg.102]

The number average diameter of microspheres obtained after the first step of polymerization was D = 3.97 p,m, and parameter characterizing polydisperity of diameters was D /Dn = 1.09 after the second step D = 5.44 p.m and D /D = 1.13 eventually, after completion of the polymerization after the third monomer addition D = 6.36 p,m and D /Dn = 1.20. Thus, we noticed a substantial increase in the diameter of the microspheres without significant broadening diameter size dispersity. [Pg.278]

The stage is then set for a solid-phase synthesis. The monomer to he used in the synthesis is added to the 96 wells in the polyethylene plate. The protecting Fmoc groups are removed from the ends of the pins, and the pins themselves are inserted into the 96 wells. At this point, the monomer in each well reacts with the exposed carhoxylate group on the end of the pin, producing the monomer-support complex (comparable to that present in the first step of resin-head-hased SPS). The 96-pin plate is then removed from the 96-well plate, and the pins are washed and reinserted into a second 96-well plate that contains the second monomer to be added. The 96-pin plate is removed, washed again, and reinserted into a third 96-well plate for the addition of a third monomer. The process is repeated as often as necessary to produce the polymers to be produced in the synthesis. [Pg.146]

For use in immunoassays, copolymers that precipitate at 0 to 17 C are difficult to synthesize by this method, especially when considering a third monomer component such as an antibody-monomer conjugate. Perhaps a better method in this case is the conjugation with activated copolymers (5), or the use of copolymers of AAM and NNBAAM. [Pg.263]

Uses. As third monomer in EPDM (ethylene-propylene diene monomer)... [Pg.335]

Terpolymerization, the simultaneous polymerization of three monomers, has become increasingly important from the commercial viewpoint. The improvements that are obtained by copolymerizing styrene with acrylonitrile or butadiene have been mentioned previously. The radical terpolymerization of styrene with acrylonitrile and butadiene increases even further the degree of variation in properties that can be built into the final product. Many other commercial uses of terpolymerization exist. In most of these the terpolymer has two of the monomers present in major amounts to obtain the gross properties desired, with the third monomer in a minor amount for modification of a special property. Thus the ethylene-propylene elastomers are terpolymerized with minor amounts of a diene in order to allow the product to be subsquently crosslinked. [Pg.485]


See other pages where Third monomer is mentioned: [Pg.327]    [Pg.365]    [Pg.502]    [Pg.502]    [Pg.503]    [Pg.503]    [Pg.503]    [Pg.503]    [Pg.446]    [Pg.588]    [Pg.357]    [Pg.1207]    [Pg.319]    [Pg.4]    [Pg.195]    [Pg.208]    [Pg.98]    [Pg.340]    [Pg.67]    [Pg.24]    [Pg.533]    [Pg.78]   
See also in sourсe #XX -- [ Pg.445 , Pg.493 ]




SEARCH



© 2024 chempedia.info