Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene propylene mbber

Propellants cast into rockets are commonly case-bonded to the motors to achieve maximum volumetric loading density. The interior of the motor is thoroughly cleaned, coated using an insulating material, and then lined with a composition to which the propellant binder adheres under the environmental stresses of the system. The insulation material is generally a mbber-type composition, filled with siUca, titanium dioxide, or potassium titanate. SiUca-filled nitrate mbber and vulcanizable ethylene—propylene mbber have been used. The liner generally consists of the same base polymer as is used in the propellant. It is usually appHed in a thin layer, and may be partially or fully cured before the propellant is poured into the rocket. [Pg.49]

A unique process for chemical stabili2ation of a ceUular elastomer upon extmsion has been shown for ethylene—propylene mbber the expanded mbber obtained by extmsion is exposed to high energy radiation to cross-link or vulcani2e the mbber and give dimensional stabUity (9). EPDM is also made continuously through extmsion and a combination of hot air and microwaves or radio frequency waves which both activate the blow and accelerate the cure. [Pg.407]

Instrumentation wires contain multiple pairs of conductors, each insulated with dame-retardant PVC and with an overall dame-retardant PVC jacket (5). Eor distribution wires polyethylene or ethylene—propylene mbber are the polymers of choice (Eig. 2c). A typical design for aerial self-supportingwires that employs PE and PVC, is shown in Eigure 2d. [Pg.323]

Electric Submersible Oil Well Pump Cable. These cables are rated up to 5 kV and are designed for highly corrosive oil wells that besides oil also contain brine and other harsh chemicals as well as gases under high pressure and high temperatures (6). Insulations can be based on polypropylene for low temperature wells or on ethylene—propylene mbber which is compounded with special ingredients in order to resist the environments of high temperature wells (Fig. 4). [Pg.324]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

Similarly, the random introduction by copolymerization of stericaHy incompatible repeating unit B into chains of crystalline A reduces the crystalline melting point and degree of crystallinity. If is reduced to T, crystals cannot form. Isotactic polypropylene and linear polyethylene homopolymers are each highly crystalline plastics. However, a random 65% ethylene—35% propylene copolymer of the two, poly(ethylene- (9-prop5lene) is a completely amorphous ethylene—propylene mbber (EPR). On the other hand, block copolymers of the two, poly(ethylene- -prop5iene) of the same overall composition, are highly crystalline. X-ray studies of these materials reveal both the polyethylene lattice and the isotactic polypropylene lattice, as the different blocks crystallize in thek own lattices. [Pg.434]

Natural mbber comes generally from southeast Asia. Synthetic mbbers are produced from monomers obtained from the cracking and refining of petroleum (qv). The most common monomers are styrene, butadiene, isobutylene, isoprene, ethylene, propylene, and acrylonitrile. There are numerous others for specialty elastomers which include acryUcs, chlorosulfonated polyethylene, chlorinated polyethylene, epichlorohydrin, ethylene—acryUc, ethylene octene mbber, ethylene—propylene mbber, fluoroelastomers, polynorbomene, polysulftdes, siUcone, thermoplastic elastomers, urethanes, and ethylene—vinyl acetate. [Pg.230]

Ethylene—Propylene Rubber. Ethylene and propjiene copolymerize to produce a wide range of elastomeric and thermoplastic products. Often a third monomer such dicyclopentadiene, hexadiene, or ethylene norbomene is incorporated at 2—12% into the polymer backbone and leads to the designation ethylene—propylene—diene monomer (EPDM) mbber (see Elastomers, synthetic-ethylene-propylene-diene rubber). The third monomer introduces sites of unsaturation that allow vulcanization by conventional sulfur cures. At high levels of third monomer it is possible to achieve cure rates that are equivalent to conventional mbbers such as SBR and PBD. Ethylene—propylene mbber (EPR) requires peroxide vulcanization. [Pg.232]

By employing additives to improve interfacial adhesion and the cohesive strength of the mbber phase, natural mbber can compete with ethylene—propylene mbbers as an impact modifier for polypropylene. These hard grades, containing between 15 and 25% natural mbber, have the potential for use in the automotive and domestic markets, eg, in bumpers, spoilers, grilles, electrical connectors, and floor tiles. [Pg.271]

EPR Rubber ethylene-propylene mbber good good good... [Pg.189]

Power Cables. The materials mosdy used to produce power cables are ethylene copolymers loaded with conductive carbon black for semiconductive shielding layers, polyethylene or ethylene—propylene mbber-based compounds as insulations, and either thermoplastic materials (eg, polyethylene, PVC) or thermosetting (based on chlorinated polyethylene (CPE), chlorosulfonated polyethylene (CSPE), chloroprene, etc) for jackets. [Pg.328]

Insulation, Cross-linked polyethylene (XPLE) and ethylene—propylene mbber (EPR), both thermosets, are the primary extruded dielectrics used in medium and high voltage power cables (Table 4). [Pg.328]

Maier and Lambla (1995) model the conversion of a nonylphenyl ethoxylate (NP8) onto a pre-maleated ethylene-propylene mbber (EPR-ma) along the reactive extmder by using a kinetics model derived from batch experiments and a residence-time-distribution model. Mathematically this model is given by the equation ... [Pg.389]

Blends of polyolefins (e.g., HPDE/LDPE, LDPE/ ethylene copolymers, PP/EPDM, PP/HDPE/EPDM, HDPE/butyl rubber) have been commercial since the late 1960 s and early 1970 s. Specific film formulations were commonly based on polyolefin blends to achieve the proper balance of processing, environmental stress crack resistance, modulus, toughness, cling, transparency, filler acceptance, printability, tear resistance, shrinkage characteristics, and permeability. Ethylene-propylene mbber (EPR, EPDM) was commonly incorporated into polypropylene as an impact modifier at moderate levels and as a flexibilizer at high levels. One of... [Pg.1171]

Polyolefins, one of the largest commodity polymeric plastics in the market place, have been widely studied over six decades covering synthesis, structural, physical, as well as mechanical properties point of views. However, the study on blends of polyolefins is rather scarce relative to their neat forms. One of the polyolefin blends that gained considerable attention is thermoplastic polyolefins (TPO) due to the enhanced impact strength and toughness of polyolefins. A typical example is a blend of polypropylene (PP) and ethylene-propylene mbber (EPR). EPR has been incorporated into PP through reaction in batch reactors or physical blending. The PP/EPR... [Pg.473]

Ethylene propylene mbber grafted with 0.4% maleic anhydride ... [Pg.416]

Fourier transform infrared step-scan photoacoustic spectroscopy was developed to study the composition of thermoplastic olefin films, as a function of depth below the surface. Infrared bands associated with talc, polypropylene (PP), and ethylene-propylene mbber (EPR) were used as depth-profiling probes to identify photoacoustic signals. Experiments were done at various modulation frequencies, enabling a stratification model to be developed. The uppermost layer (0-3 micrometre) showed large changes in talc and PP concentration, whilst the layer below showed a significant decrease in both the phases. In the third layer (6-9 micrometre), all three phases showed the maximum values. In the fourth layer (9-12 micrometre), the talc concentration reduced, whilst concentrations of EPR and PP were observed, decreasing with depth. 32 refs. [Pg.53]


See other pages where Ethylene propylene mbber is mentioned: [Pg.98]    [Pg.514]    [Pg.324]    [Pg.327]    [Pg.328]    [Pg.415]    [Pg.421]    [Pg.415]    [Pg.421]    [Pg.465]    [Pg.469]    [Pg.481]    [Pg.502]    [Pg.169]    [Pg.298]    [Pg.333]    [Pg.869]    [Pg.273]    [Pg.415]    [Pg.421]    [Pg.324]    [Pg.327]    [Pg.98]    [Pg.549]    [Pg.271]    [Pg.24]   
See also in sourсe #XX -- [ Pg.235 , Pg.300 ]




SEARCH



Ethylene propylene

Mbber

© 2024 chempedia.info