Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Residency, defined

However, the laboratory data seem to indicate that a constant concentration in the reactor to maintain 63 percent sulfuric acid would be beneficial. Careful temperature control is also important. These two factors would suggest that a continuous well-mixed reactor is appropriate. There is a conflict. How can a well-defined residence time be maintained and simultaneously a constant concentration of sulfuric acid be maintained ... [Pg.52]

Interfacial Mass-Transfer Coefficients. Whereas equiHbrium relationships are important in determining the ultimate degree of extraction attainable, in practice the rate of extraction is of equal importance. EquiHbrium is approached asymptotically with increasing contact time in a batch extraction. In continuous extractors the approach to equiHbrium is determined primarily by the residence time, defined as the volume of the phase contact region divided by the volume flow rate of the phases. [Pg.62]

However, in a countercurrent column contactor as sketched in Figure 8, the holdup of the dispersed phase is considerably less than this, because the dispersed drops travel quite fast through the continuous phase and therefore have a relatively short residence time in the equipment. The holdup is related to the superficial velocities U of each phase, defined as the flow rate per unit cross section of the contactor, and to a sHp velocity U (71,72) ... [Pg.69]

If equation 7 holds, then the soHd is exclusively in the aqueous phase equation 8 defines the condition at which the soHd resides in the oil phase whereas if equation 9 is satisfied then the soHd collects at the water—oil interfacial region. Figure 16 is the flow sheet of a bench-scale study that demonstrates the concept of two-Hquid flotation (40). [Pg.53]

Chemical Reaction Measurements. Experimental studies of incineration kinetics have been described (37—39), where the waste species is generally introduced as a gas in a large excess of oxidant so that the oxidant concentration is constant, and the heat of reaction is negligible compared to the heat flux required to maintain the reacting mixture at temperature. The reaction is conducted in an externally heated reactor so that the temperature can be controlled to a known value and both oxidant concentration and temperature can be easily varied. The experimental reactor is generally a long tube of small diameter so that the residence time is well defined and axial dispersion may be neglected as a source of variation. Off-gas analysis is used to track both the disappearance of the feed material and the appearance and disappearance of any products of incomplete combustion. [Pg.57]

Batch reactors often are used to develop continuous processes because of their suitabiUty and convenient use in laboratory experimentation. Industrial practice generally favors processing continuously rather than in single batches, because overall investment and operating costs usually are less. Data obtained in batch reactors, except for very rapid reactions, can be well defined and used to predict performance of larger scale, continuous-flow reactors. Almost all batch reactors are well stirred thus, ideally, compositions are uniform throughout and residence times of all contained reactants are constant. [Pg.505]

The concept of residence time can also be appHed to lakes where the flow through the outlet has to be considered. In lakes it is often convenient to define a relative residence time, ie, a residence time relative to that of water. [Pg.216]

Resistance to Tetracyclines. The tetracyclines stiU provide inexpensive and effective treatment for several microbial infections, but the emergence of acquired resistance to this class of antibiotic has limited their clinical usehilness. Studies to define the molecular basis of resistance are underway so that derivatives having improved antibacterial spectra and less susceptibiUty to bacterial resistance may be developed. Tetracyclines are antibiotics of choice for relatively few human infections encountered in daily clinical practice (104), largely as a result of the emergence of acquired tetracycline-resistance among clinically important bacteria (88,105,106). Acquired resistance occurs when resistant strains emerge from previously sensitive bacterial populations by acquisition of resistance genes which usually reside in plasmids and/or transposons (88,106,107). Furthermore, resistance deterrninants contained in transposons spread to, and become estabUshed in, diverse bacterial species (106). [Pg.182]

If the crystallizer is now assumed to operate with a cleat feed (n = 0), at steady state (dn jdt = 0), and if the crystal growth rate G is invariant and a mean residence time T is defined as then the population balance can be written as... [Pg.349]

For evafuating the residence time 0g of gas in the froth, the volume of the froth is taken as Aohf, where the height of the froth hj is obtained by first determining effective froth density [Eq. (14-117)]. The dimensionless froth density is defined by... [Pg.1382]

The mean residence time T (defined as H JF) is the most important parameter, since it determines the time over which particles are exposed to grinding. Measurements on several industrial mills (Weller, Automation in Mining Mineral and Metal Processing, 3d IFAC Symposium, 303-309, 1980) (measured on the water, not the ore) showed that the maximum mill filhng was about 40 percent, and the maximum flow velocity through the mill is 40 m/h. [Pg.1851]

Static sampling systems are defined as those that do not have an active air-moving component, such as the pump, to pull a sample to the collection medium. This type of sampling system has been used for over 100 years. Examples include the lead peroxide candle used to detect the presence of SO2 in the atmosphere and the dust-fall bucket and trays or slides coated with a viscous material used to detect particulate matter. This type of system suffers from inability to quantify the amount of pollutant present over a short period of time, i.e., less than 1 week. The potentially desirable characteristics of a static sampling system have led to further developments in this type of technology to provide quantitative information on pollutant concentrations over a fked period of time. Static sampling systems have been developed for use in the occupational environment and are also used to measure the exposure levels in the general community, e.g., radon gas in residences. [Pg.189]

With the above as an introduction, we now consider the important operational case of filtration performed under constant pressure. In practice, all the parameters defined above are nearly constant under steady state conditions except V and r, which are varied by the operator. We may therefore integrate the working expression for filtration over the limits of volume from 0 to V, and for residence time over the limits of 0 to x ... [Pg.379]

The mean residence time is evaluated in terms of the fractional conversion as defined by Ca = Caq(1 X )-... [Pg.316]

Mean residence time The average time spent by the moleeules in a vessel. It is the first moment of the effluent eoneentration from a vessel with impulse input and is defined by... [Pg.758]

Many other combinations exist but will not be described here. In small cabins, for storage or work, it is possible to supply and exhaust air in a controlled way to have a defined climate. There are also special sluices, where air is used to rinse the clothes from settled contaminants before a person proceeds to the next, cleaner room. In this case, very high air velocities are used, which could cause discomfort to the person. The residence time for the person usually is less than a couple of minutes and the main objective is to clean the clothes (and sometimes the skin) and therefore the high velocities do not matter. [Pg.1005]

Depth of thickening zone. Feed slurry entering the unit at eoneentration F has to reside in the vessel for time /r to reaeh eoneentration S. The sediment therefore has to remain in the thiekening zone for at least a period /r defined by tR = Volume of thiekening zone/Volumetrie flowrate of slurry. [Pg.84]

One area of cat cracking not fully understood is the proper determination of carbon residue of the feed and how it affects the unit s coke make. Carbon residue is defined as the carbonaceous residue formed after thermal destruction of a sample. Cat crackers are generally limited in coke burn capacity, therefore, the inclusion of residue in the feed produces more coke and forces a reduction in FCC throughput. Conventional gas oil feeds generally have a carbon residue less than 0,5 wt for feeds containing resid, the number can be as high as 15 wt lf. [Pg.52]

Slip factor is defined as the ratio of catalyst residence time in the riser to the hydrocarbon vapor residence time. Some of the factors affecting the slip factor are circulation rate, riser diameter/geometry, and riser velocity. [Pg.242]

The essence of the LST for one-dimensional lattices resides in the fact that an operator TtN->N+i could be constructed (equation 5.71), mapping iV-block probability functions to [N -f l)-block probabilities in a manner which satisfies the Kolmogorov consistency conditions (equation 5.68). A sequence of repeated applications of this operator allows us to define a set of Bayesian extended probability functions Pm, M > N, and thus a shift-invariant measure on the set of all one-dimensional configurations, F. Unfortunately, a simple generalization of this procedure to lattices with more than one dimension, does not, in general, produce a set of consistent block probability functions. Extensions must instead be made by using some other, approximate, method. We briefly sketch a heuristic outline of one approach below (details are worked out in [guto87b]). [Pg.258]


See other pages where Residency, defined is mentioned: [Pg.314]    [Pg.15]    [Pg.650]    [Pg.69]    [Pg.56]    [Pg.166]    [Pg.172]    [Pg.247]    [Pg.510]    [Pg.510]    [Pg.215]    [Pg.230]    [Pg.231]    [Pg.352]    [Pg.1857]    [Pg.2016]    [Pg.474]    [Pg.453]    [Pg.471]    [Pg.180]    [Pg.329]    [Pg.81]    [Pg.166]    [Pg.258]    [Pg.281]    [Pg.252]    [Pg.10]    [Pg.277]    [Pg.610]   
See also in sourсe #XX -- [ Pg.373 ]

See also in sourсe #XX -- [ Pg.231 ]




SEARCH



© 2024 chempedia.info