Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer interfacial coefficients

Data Effective interfacial area for 25 mm packing = 280 m2/m3 Mass transfer film coefficients ... [Pg.283]

Since the mass transfer coefficient, k, and the specific interfacial area, a, vary in a similar manner, dependent upon the hydrodynamic conditions and system physical properties, they are frequently combined and referred to as a ka value or more properly as a mass transfer capacity coefficient. [Pg.47]

In this chapter, we study various correlations for gas-liquid mass transfer, interfacial area, bubble size, gas hold-up, agitation power consumption, and volumetric mass-transfer coefficient, which are vital tools for the design and operation of fermenter systems. Criteria for the scale-up and shear sensitive mixing are also presented. First of all, let s review basic mass-transfer concepts important in understanding gas-liquid mass transfer in a fermentation system. [Pg.223]

The mass transfer film coefficients (kx and l y) are more directly related to physical properties, such as diffusivities and hydrodynamic conditions, than the overall mass transfer coefficients (Kx and Ky and are, therefore, easier to predict and correlate. On the other hand, since the interfacial compositions are difficult to measure or predict, it is more convenient to use overall mass transfer coefficients for process design and analysis. The relationship between the two sets of mass transfer coef-hcients may be derived by equating different groups in Equations 15.11 and 15.12 as follows ... [Pg.539]

Correlations are next reported for gas-liquid mass transfer, interfacial area, bubble size, gas hold-up, agitation power consumption, and volumetric mass-transfer coefficients, which are vital tools for the design and operation of fermenter systems. [Pg.1525]

Other correlations based partially on theoretical considerations but made to fit existing data also exist (71—75). A number of researchers have also attempted to separate from a by measuring the latter, sometimes in terms of the wetted area (76—78). Finally, a number of correlations for the mass transfer coefficient itself exist. These ate based on a mote fundamental theory of mass transfer in packed columns (79—82). Although certain predictions were verified by experimental evidence, these models often cannot serve as design basis because the equations contain the interfacial area as an independent variable. [Pg.37]

Interfacial Mass-Transfer Coefficients. Whereas equiHbrium relationships are important in determining the ultimate degree of extraction attainable, in practice the rate of extraction is of equal importance. EquiHbrium is approached asymptotically with increasing contact time in a batch extraction. In continuous extractors the approach to equiHbrium is determined primarily by the residence time, defined as the volume of the phase contact region divided by the volume flow rate of the phases. [Pg.62]

The enhanced rate expressions for regimes 3 and 4 have been presented (48) and can be appHed (49,50) when one phase consists of a pure reactant, for example in the saponification of an ester. However, it should be noted that in the more general case where component C in equation 19 is transferred from one inert solvent (A) to another (B), an enhancement of the mass-transfer coefficient in the B-rich phase has the effect of moving the controlling mass-transfer resistance to the A-rich phase, in accordance with equation 17. Resistance in both Hquid phases is taken into account in a detailed model (51) which is apphcable to the reversible reactions involved in metal extraction. This model, which can accommodate the case of interfacial reaction, has been successfully compared with rate data from the Hterature (51). [Pg.64]

Interfacial Contact Area and Approach to Equilibrium. Experimental extraction cells such as the original Lewis stirred cell (52) are often operated with a flat Hquid—Hquid interface the area of which can easily be measured. In the single-drop apparatus, a regular sequence of drops of known diameter is released through the continuous phase (42). These units are useful for the direct calculation of the mass flux N and hence the mass-transfer coefficient for a given system. [Pg.64]

R is rate of reaction per unit area, a is interfacial area per unit volume, S is solubiHty of solute in continuous phase, D is diffusivity of solute, k is rate constant, kj is mass-transfer coefficient, is concentration of reactive species, and Z is stoichiometric coefficient. When Dk is considerably greater (10 times) than Ra = aS Dk. [Pg.430]

Under equiUbrium or near-equiUbrium conditions, the distribution of volatile species between gas and water phases can be described in terms of Henry s law. The rate of transfer of a compound across the water-gas phase boundary can be characterized by a mass-transfer coefficient and the activity gradient at the air—water interface. In addition, these substance-specific coefficients depend on the turbulence, interfacial area, and other conditions of the aquatic systems. They may be related to the exchange constant of oxygen as a reference substance for a system-independent parameter reaeration coefficients are often known for individual rivers and lakes. [Pg.218]

The important point to note here is that the gas-phase mass-transfer coefficient fcc depends principally upon the transport properties of the fluid (Nsc) 3nd the hydrodynamics of the particular system involved (Nrc). It also is important to recognize that specific mass-transfer correlations can be derived only in conjunction with the investigator s particular assumptions concerning the numerical values of the effective interfacial area a of the packing. [Pg.604]

With complicated geometries, the product of the interfacial area per volume and the mass-transfer coefficient is required. Correlations of kop or of HTU are more accurate than individual correlations of k and since the measurements are simpler to determine the produc t kop or HTU. [Pg.606]

To determine the mass-transfer rate, one needs the interfacial area in addition to the mass-transfer coefficient. For the simpler geometries, determining the interfacial area is straightforward. For packed beds of particles a, the interfacial area per volume can be estimated as shown in Table 5-27-A. For packed beds in distillation, absorption, and so on in Table 5-28, the interfacial area per volume is included with the mass-transfer coefficient in the correlations for HTU. For agitated liquid-liquid systems, the interfacial area can be estimated... [Pg.606]

In developing correlations for the mass-transfer coefficients Icq and /cl, the various authors have assumed different but internally compatible correlations for the effective interfacial area a. It therefore would be inappropriate to mix the correlations of different authors unless it has been demonstrated that there is a valid area of overlap between them. [Pg.624]

Volumetric Mass-Transfer Coefficients and Kia Experimental determinations of the individual mass-transfer coefficients /cg and /cl and of the effective interfacial area a involve the use of extremely difficult techniques, and therefore such data are not plentiful. More often, column experimental data are reported in terms of overall volumetric coefficients, which normally are defined as follows ... [Pg.624]

Experimental values of Hqg -nd Hql for a number of distillation systems of commercial interest are also readily available. Extrapolation of the data or the correlations to conditions that differ significantly from those used for the original experiments is risky. For example, pressure has a major effect on vapor density and thus can affect the hydrodynamics significantly. Changes in flow patterns affeci both mass-transfer coefficients and interfacial area. [Pg.625]

According to this method, it is not necessaiy to investigate the kinetics of the chemical reactions in detail, nor is it necessary to determine the solubihties or the diffusivities of the various reactants in their unreacted forms. To use the method for scaling up, it is necessaiy independently to obtain data on the values of the interfacial area per unit volume a and the physical mass-transfer coefficient /c for the commercial packed tower. Once these data have been measured and tabulated, they can be used directly for scahng up the experimental laboratory data for any new chemic ly reac ting system. [Pg.1366]

There are a number of different types of experimental laboratory units that could be used to develop design data for chemically reacting systems. Charpentier [ACS Symp. Sen, 72, 223-261 (1978)] has summarized the state of the art with respect to methods of scaUng up lab-oratoiy data and tabulated typical values of the mass-transfer coefficients, interfacial areas, and contact times to be found in various commercial gas absorbers as well as in currently available laboratoiy units. [Pg.1366]

It would be desirable to reinterpret existing data for commercial tower packings to extract the individual values of the interfacial area a and the mass-transfer coefficients fcc and /c in order to facilitate a more general usage of methods for scaling up from laboratory experiments. Some progress in this direction has afready been made, as discussed later in this section. In the absence of such data, it is necessary to operate a pilot plant or a commercial absorber to obtain kc, /c , and a as described by Ouwerkerk (op. cit.). [Pg.1366]

Principles of Rigorous Absorber Design Danckwerts and Alper [Trans. Tn.st. Chem. Eng., 53, 34 (1975)] have shown that when adequate data are available for the Idnetic-reaciion-rate coefficients, the mass-transfer coefficients fcc and /c , the effective interfacial area per unit volume a, the physical solubility or Henry s-law constants, and the effective diffusivities of the various reactants, then the design of a packed tower can be calculated from first principles with considerable precision. [Pg.1366]

Note that the product of the mass-transfer coefficient and the interfacial area is a volumetric coefficient and obviates the need for a value of the interfacial area. While areas for mass transfer on plates have been measured, the experimental contacting equipment cuffered significantly from that used for commercial distillation or gas absorption, and the reported areas are considered unreliable for design purposes. [Pg.1382]

The mass-transfer coefficient of Eq. (14-139) is carried as a product with interfacial area (giving a volumetric mass transfer coefficient) ... [Pg.1382]

Gas-phase and liqmd-phase mass-transfer coefficients interfacial area... [Pg.1425]

Interfacial Area This consideration in agitated vessels has been reviewed and summarized by Tatterson (op. cit.). Predictive methods for interfacial area are not presented here because correlations are given for the overall volumetric mass transfer coefficient liquid phase controlhng mass transfer. [Pg.1425]

Prediction methods attempt to quantify the resistances to mass transfer in terms of the raffinate rate R and the extract rate E, per tower cross-sectional area Af, and the mass-transfer coefficient in the raffinate phase and the extract phase times the interfacial (droplet) mass-transfer area per volume of tower a [Eqs. (15-32) and (15-33)]. [Pg.1464]

The mass-transfer coefficients depend on complex functions of diffii-sivity, viscosity, density, interfacial tension, and turbulence. Similarly, the mass-transfer area of the droplets depends on complex functions of viscosity, interfacial tension, density difference, extractor geometry, agitation intensity, agitator design, flow rates, and interfacial rag deposits. Only limited success has been achieved in correlating extractor performance with these basic principles. The lumped parameter deals directly with the ultimate design criterion, which is the height of an extraction tower. [Pg.1464]


See other pages where Mass transfer interfacial coefficients is mentioned: [Pg.1476]    [Pg.1299]    [Pg.994]    [Pg.1480]    [Pg.393]    [Pg.20]    [Pg.37]    [Pg.38]    [Pg.87]    [Pg.501]    [Pg.602]    [Pg.1292]    [Pg.1364]    [Pg.1367]    [Pg.1382]    [Pg.1425]    [Pg.1426]    [Pg.1468]    [Pg.2003]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Interfacial areas and mass transfer coefficients

Interfacial gradient effects mass transfer coefficients

Interfacial mass transfer

Interfacial transfer

Mass coefficient

Mass transfer coefficient

Mass transfer coefficient interfacial area effect

© 2024 chempedia.info