Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference compounds, mass spectrometry

The identification of accumulating metabolites characteristic of a metabolic disease employs mass spectrometry in a qualitative manner. Compounds are identified in a fingerprint sense by computer-comparison of the mass spectra of unknowns with a library of reference spectra either purchased with the instrument or accumulated in-house from reference compounds. Mass spectrometry may also be used in a quantitative sense for the purpose of monitoring or evaluating patients, usually as part of a treatment protocol. [Pg.101]

It is recommended that the convention used by Budzikiewicz, Djerassi, and Williams (Mass Spectrometry of Organic Compounds, Holden-Day, 1967, p. 2) be followed in referring to a-cleavage as fission of a bond originating at an atom which is adjacent to the one assumed to bear the charge the definition of p-, y-, then follows automatically. The process ... [Pg.440]

Mass Spectra and Chemical Structure While there are a number of books (Refs 16, 30, 49 64) already referred to, which deal with details of the instrumentation and techniques of mass spectrometry, there are several concise introductory texts (Refs 10, 21 52) on the interpretation of mass spectra. Still other recent books deal comprehensively with organic structural investigation by mass spectrometry. One of these (Ref 63) discusses fundamentals of ion fragmentation mechanisms, while the others (Refs 7, 15, 20, 28 29) describe mass spectra of various classes of organic compounds. In the alloted space for this article methods of interpretation of mass spectra and structural identification can not be described in depth. An attempt is, therefore, made only to briefly outline the procedures used in this interpretation... [Pg.49]

In the following sections, the instrumental features of direct mass spectrometry based techniques (DI-MS, DE-MS and DTMS) are presented, followed by a discussion of some mass spectra of standard compounds and reference materials. Finally, a series of case studies related to the presence of resinous materials in archaeological findings and works of art are reported and discussed. [Pg.78]

PMR spectrometry is an extremely useful technique for the identification and structural analysis of organic compounds in solution, especially when used in conjunction with infrared, ultraviolet, visible and mass spectrometry. Interpretation of PMR spectra is accomplished by comparison with reference spectra and reference to chemical shift tables. In contrast to infrared spectra, it is usually possible to identify all the peaks in a PMR spectrum, although the complete identification of an unknown compound is often not possible without other data. Some examples of PMR spectra are discussed below. [Pg.421]

No tandem MS experiment can be successful if the precursor ions fail to fragment (at the right time and place). The ion activation step is crucial to the experiment and ultimately defines what types of products result. Hence, the ion activation method that is appropriate for a specific application depends on the MS instrument configuration as well as on the analyzed compounds and the structural information that is wanted. Various, more or less complementary, ion activation methods have been developed during the history of tandem MS. Below we give brief descriptions of several of these approaches. A more detailed description of peptide fragmentation mles and nomenclature is provided in Chapter 2. An excellent review of ion activation methods for tandem mass spectrometry is written by Sleno and Volmer, see Reference 12, and for a more detailed review on slow heating methods in tandem MS, see Reference 13. [Pg.97]

Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17. Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17.
Figure 2.2 shows the total ion current trace and a number of appropriate mass chromatograms obtained from the pyrolysis gas chromatography-mass spectrometry analysis of the polluted soil sample. The upper trace represents a part of the total ion current magnified eight times. The peak numbers correspond with the numbers mentioned in Table 2.1 and refer to the identified compounds. The identification was based on manual comparison of mass spectra and relative gas chromatographic retention times with literature data [34, 35] and with data of standards available. In some cases unknown compounds were tentatively identified on the basis of a priori interpretation of their mass spectra (labelled tentative in Table 2.1). [Pg.124]

In a subsequent study, Schnitzer and Spiteller [15] hydrolyzed each fraction with 2 M H2S04. After neutralization of the soluble materials, the latter were reduced with NaBH4 and then acetylated. The resulting acetates were analyzed by capillary gas chromatography/mass spectrometry, and identified by comparing their mass spectra with those of reference compounds of known structures and with literature data. Eighteen N-heterocyclics were identified. These compounds induded hydroxy-and oxy-indoles, quinolines, isoquinolines, aminobenzofurans, piperidines, pyrro-lines, and pyrrolidines. In addition, a number of benzylamines and nitriles were also identified. It is noteworthy that the N heterocyclics were isolated and identified without the use of pyrolysis. [Pg.122]

Schulten et al. [16] identified the following N-containing compounds in NH-N fractions separated from several soils by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) pyrrole (la), methyl pyrrole (lb), pyridine (IVa), methylpyridine (IVb), indole (Via), and benzothiazole (XI). The Roman numerals refer to the chem-... [Pg.122]

In the past, PTRC screening was mainly based on gas chromatography-mass spectrometry (GC-MS) [116]. The choice of GC-MS was based on a number of good reasons (separation power of GC, selectivity of detection offered by MS, inherent simplicity of information contained in a mass spectrum, availability of a well established and standardized ionization technique, electron ionization, which allowed the construction of large databases of reference mass spectra, fast and reliable computer aided identification based on library search) that largely counterbalanced the pitfalls of GC separation, i.e., the need to isolate analytes from the aqueous substrate and to derivatize polar compounds [117]. [Pg.674]

The Nickel Producers Environmental Research Association (NiPERA) is sponsoring research on the application of inductively coupled plasma-mass spectroscopy (ICP-MS) to isotopic analysis of nickel in biological samples, on the development of sampling instrumentation for assessing workers exposure to nickel in the nickel industry, and on methods for utilizing newly developed analytical methods, such as laser beam ionization mass spectrometry, for the identification and speciation of nickel compounds in powders and dusts with particular reference to nickel refining. [Pg.215]


See other pages where Reference compounds, mass spectrometry is mentioned: [Pg.86]    [Pg.537]    [Pg.540]    [Pg.76]    [Pg.382]    [Pg.158]    [Pg.204]    [Pg.112]    [Pg.498]    [Pg.410]    [Pg.412]    [Pg.675]    [Pg.735]    [Pg.343]    [Pg.23]    [Pg.998]    [Pg.53]    [Pg.80]    [Pg.102]    [Pg.33]    [Pg.19]    [Pg.27]    [Pg.89]    [Pg.291]    [Pg.99]    [Pg.66]    [Pg.214]    [Pg.17]    [Pg.409]    [Pg.198]    [Pg.150]    [Pg.178]    [Pg.587]    [Pg.163]    [Pg.4]    [Pg.230]    [Pg.180]   
See also in sourсe #XX -- [ Pg.581 ]




SEARCH



Mass reference compound

Mass spectrometry compounds

Reference compounds

Tris -s-triazine, as reference compound for mass spectrometry

© 2024 chempedia.info