Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microemulsions reactions

Microemulsions act as attractive media for polymerization reactions. Microemulsion polymerization is a novel fabrication technique which allows the preparation of ultrafine latex particles within the size range from 10 nm... [Pg.200]

Magnetite particles are quite intriguing, due to their catalytic and magnetic properties strongly dependent on the chosen synthesis method. Several methods are described in the literature, but in the present manuscript we are going to focus on the most common ones iron salts co-precipitation (Massart, 1981 Martinez-Mera et al, 2007), sol-gel reaction, microemulsion (Woo et al., 2003), reaction in mass without solvent (Ye et al., 2006), polyols process (Feldmann Jungk, 2001), decomposition of iron pentacarbonyl (Shafi et al., 2001), etc. [Pg.150]

From the perspective of apphcations, the traditional micellar enzymology has found potential apphcations in the biosynthesis and bioresolution of chiral drugs and in the preparation of biodiesel (via transesterification reaction). Microemulsion-based gelation creates favorable conditions for the reuse of enzymes. As a solvent, room-temperature ILs have potential advantages over molecular organic solvents, so the use of I L-based microemulsions will bring new opportunities for and give fresh impetus to biocatalysis and biotransformation. [Pg.544]

Dunn A S 1989 Polymerization in micelles and microemulsions Comprehensive Polymer Science—the Synthesis, Characterization, Reactions and Applications of Polymers vo 4, ed G C Eastmond, A Ledwith, S Russo and P Sigwalt (New York Pergamon) pp 219-24... [Pg.2606]

Analogously, the effect of micelles on the rate of the unimolecular retro Diels-Alder reaction has been studied. Also here only a modest retardation" or acceleration" is observed. Likewise, the presence of micelles has been reported to have a modest influence on an intramolecular Diels-Alder reaction . Studies on the endo-exo selectivity of a number of different Diels-Alder reactions in micellar media lead to comparable conclusions. Endo-exo selectivities tend to be somewhat smaller in micellar solutions than in pure water, but still are appreciably larger than those in organic media In contrast, in microemulsions the endo-exo selectivity is reduced significantly" ... [Pg.132]

However, in the case of mini- and microemulsions, processing methods reduce the size of the monomer droplets close to the size of the micelle, leading to significant particle nucleation in the monomer droplets (17). Intense agitation, cosurfactant, and dilution are used to reduce monomer droplet size. Additives like cetyl alcohol are used to retard the diffusion of monomer from the droplets to the micelles, in order to further promote monomer droplet nucleation (18). The benefits of miniemulsions include faster reaction rates (19), improved shear stabiHty, and the control of particle size distributions to produce high soHds latices (20). [Pg.23]

Microemulsions or reverse micelles are composed of enzyme-containing, surfactant-stabiHzed aqueous microdroplets in a continuous organic phase. Such systems may be considered as a kind of immobilization in enzymatic synthesis reactions. [Pg.291]

The main supramolecular self-assembled species involved in analytical chemistry are micelles (direct and reversed), microemulsions (oil/water and water/oil), liposomes, and vesicles, Langmuir-Blodgett films composed of diphilic surfactant molecules or ions. They can form in aqueous, nonaqueous liquid media and on the surface. The other species involved in supramolecular analytical chemistry are molecules-receptors such as calixarenes, cyclodextrins, cyclophanes, cyclopeptides, crown ethers etc. Furthermore, new supramolecular host-guest systems arise due to analytical reaction or process. [Pg.417]

It is now believed from studies on the natural photosynthetic systems that microenvironments for the photoinduced ET reaction play an important role in the suppression of the back ET [1-3]. As such reaction environments, molecular assembly systems such as micelles [4], liposomes [5], microemulsions [6-8] and colloids [9] have been extensively investigated. In them, the presence of microscopically heterogeneous phases and interfacial electrostatic potential is the key to the ET rate control. [Pg.52]

Today microemulsions are used in catalysis, preparation of submicron particles, solar energy conversion, extraction of minerals and protein, detergency and lubrication [58]. Most studies in the field of basic research have dealt with the physical chemistry of the systems themselves and only recently have microemulsions been used as a reaction medium in organic synthesis. The reactions investigated to date include nucleophilic substitution and additions [59], oxidations [59-61], alkylation [62], synthesis of trialkylamines [63], coupling of aryl halides [64], nitration of phenols [65], photoamidation of fluoroolefins [66] and some Diels-Alder reactions. [Pg.281]

Physical-chemical studies require traces of additives (reactants, catalysts, electrolytes) with respect to the concentration of the basic components of the microemulsion, and this causes only a minor change in the phase behavior of the system. However, when the amounts of additives are on the scale used in organic synthesis, the phase behavior, which is very sensitive to the concentration of the reactants, is sometimes difficult to control and the reaction is carried out in a one-, two- or three-phase state. [Pg.282]

The diastereoselection of the Diels Alder reaction of methyl acrylate with cyclopentadiene was investigated [74] in microemulsions prepared with isooctane oil, CTAB as surfactant and 1-butanol as cosurfactant, and the results were compared with those found in pure solvents and water (Table 6.12). In emulsions rich in 1-butanol and formamide (entries 1 and 4) the reaction was slow (72 h) and the diastereoselectivity was practically the same as that... [Pg.282]

Table 6.12 Diastereoselectivity of Diels-Alder reaction of methyl acrylate with cyclopentadiene in formamide microemulsion and pure solvents... Table 6.12 Diastereoselectivity of Diels-Alder reaction of methyl acrylate with cyclopentadiene in formamide microemulsion and pure solvents...
Hager M, Currie F, Holmberg K (2003) Organic Reactions in Microemulsions. 227 53-74 Hausler H, Stiitz AE (2001) d-Xylose (d-Glucose) Isomerase and Related Enzymes in Carbohydrate Synthesis. 215 77-114... [Pg.233]

Moreover, stable liquid systems made up of nanoparticles coated with a surfactant monolayer and dispersed in an apolar medium could be employed to catalyze reactions involving both apolar substrates (solubilized in the bulk solvent) and polar and amphiphilic substrates (preferentially encapsulated within the reversed micelles or located at the surfactant palisade layer) or could be used as antiwear additives for lubricants. For example, monodisperse nickel boride catalysts were prepared in water/CTAB/hexanol microemulsions and used directly as the catalysts of styrene hydrogenation [215]. [Pg.491]

Nanoparticles solubilized in w/o microemulsions have been obtained by performing in situ suitable reactions [196], by dispersion of particles [219,220], or by controlled nanoprecipitation of a solubilizate [221,222]. [Pg.491]

Under comparable conditions, the reaction rates of the octyl decanoate synthesis by chromobacterium viscosum lipase in AOT-based microemulsions or immobihzed in AOT-based organogels were similar [286,287],... [Pg.497]

Au (or Ag) content. Decanethiol-protected AuPt alloy bimetallic nanoparticles of ca. 2.5 nm in particle size were similarly prepared [58]. The preparations of PdPt [59] and AuPd [60] bimetallic nanoparticles in water-in-oil (w/o) microemulsions can be realized in two-phase reaction system, in which a surfactant molecule itself works as a protecting agent in these cases. [Pg.53]

The rates of multiphase reactions are often controlled by mass tran.sfer across the interface. An enlargement of the interfacial surface area can then speed up reactions and also affect selectivity. Formation of micelles (these are aggregates of surfactants, typically 400-800 nm in size, which can solubilize large quantities of hydrophobic substance) can lead to an enormous increase of the interfacial area, even at low concentrations. A qualitatively similar effect can be reached if microemulsions or hydrotropes are created. Microemulsions are colloidal dispersions that consist of monodisperse droplets of water-in-oil or oil-in-water, which are thermodynamically stable. Typically, droplets are 10 to 100 pm in diameter. Hydrotropes are substances like toluene/xylene/cumene sulphonic acids or their Na/K salts, glycol.s, urea, etc. These. substances are highly soluble in water and enormously increase the solubility of sparingly. soluble solutes. [Pg.9]

Microemulsion media seem to be very useful in getting monodisperse CaCOj particles of 30 A via carbonation of calcium phenates (Marsh, 1987) this process is relevant in making lube additives. The mechanism of reaction crystallization in such systems has hardly received attention. [Pg.150]

Tjandra et al. (1998) have proposed an interfacial reaction model for the kinetics of the reaction between 1-bromo octane and sodium phenoxide to give 1-phenoxyoctane in a nonionic microemulsion. In this model the microemulsion is assumed to consist of the aqueous phase and the interface is covered by a monolayer of surfactant molecules. It is thus possible to assess the interfacial area from the concentration of the surfactant in the microemulsion medium. [Pg.151]


See other pages where Microemulsions reactions is mentioned: [Pg.63]    [Pg.280]    [Pg.366]    [Pg.151]    [Pg.336]    [Pg.63]    [Pg.280]    [Pg.366]    [Pg.151]    [Pg.336]    [Pg.204]    [Pg.519]    [Pg.2594]    [Pg.70]    [Pg.224]    [Pg.47]    [Pg.265]    [Pg.336]    [Pg.251]    [Pg.281]    [Pg.282]    [Pg.283]    [Pg.484]    [Pg.490]    [Pg.1069]    [Pg.234]    [Pg.149]    [Pg.150]    [Pg.151]   


SEARCH



Chemical reactions, microemulsion facilitation

Inorganic reactions in microemulsions

Microemulsion chemical reaction

Microemulsion inorganic reactions

Microemulsion reactions

Microemulsion reactions

Microemulsions Droplet phase reactions

Microemulsions electrochemical reactions

Microemulsions enzymatic reactions

Microemulsions inorganic reactions

Reactions in Micellar Solutions and Microemulsions

Reactions in microemulsions

Reactions, microemulsion facilitation

Some Examples of Reactions in Reverse Micelles and Microemulsions

© 2024 chempedia.info