Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk solvent

The are essentially adjustable parameters and, clearly, unless some of the parameters in A2.4.70 are fixed by physical argument, then calculations using this model will show an improved fit for purely algebraic reasons. In principle, the radii can be fixed by using tables of ionic radii calculations of this type, in which just the A are adjustable, have been carried out by Friedman and co-workers using the HNC approach [12]. Further rermements were also discussed by Friedman [F3], who pointed out that an additional temi is required to account for the fact that each ion is actually m a cavity of low dielectric constant, e, compared to that of the bulk solvent, e. A real difficulty discussed by Friedman is that of making the potential continuous, since the discontinuous potentials above may lead to artefacts. Friedman [F3] addressed this issue and derived... [Pg.583]

A quite different approach was adopted by Robinson and Stokes [8], who emphasized, as above, that if the solute dissociated into ions, and a total of h molecules of water are required to solvate these ions, then the real concentration of the ions should be corrected to reflect only the bulk solvent. Robinson and Stokes derive, with these ideas, the following expression for the activity coefficient ... [Pg.584]

The relation between the microscopic friction acting on a molecule during its motion in a solvent enviromnent and macroscopic bulk solvent viscosity is a key problem affecting the rates of many reactions in condensed phase. The sequence of steps leading from friction to diflfiision coefficient to viscosity is based on the general validity of the Stokes-Einstein relation and the concept of describing friction by hydrodynamic as opposed to microscopic models involving local solvent structure. In the hydrodynamic limit the effect of solvent friction on, for example, rotational relaxation times of a solute molecule is [ ]... [Pg.853]

The most widely used descriptor for the hydrophobicity term in toxicology is the distribution coefficient between octanol and water, log Pq< - (the environmental scientists would rather call it log The bulk solvent octanol is of course a... [Pg.505]

It is sometimes desirable to include the effect of the rest of the system, outside of the QM and MM regions. One way to do this is using periodic boundary conditions, as is done in liquid-state simulations. Some researchers have defined a potential that is intended to reproduce the effect of the bulk solvent. This solvent potential may be defined just for this type of calculation, or it may be a continuum solvation model as described in the next chapter. For solids, a set of point charges, called a Madelung potential, is often used. [Pg.200]

The energy of solvation can be further broken down into terms that are a function of the bulk solvent and terms that are specifically associated with the first solvation shell. The bulk solvent contribution is primarily the result of dielectric shielding of electrostatic charge interactions. In the simplest form, this can be included in electrostatic interactions by including a dielectric constant k, as in the following Coulombic interaction equation ... [Pg.206]

How many samples are taken can be of importance. One sample often suffices where it is known that the material in question is homogeneous for the parameter(s) to be tested, such as for pure gases or bulk solvents. If this is not the case, then statistical sampling should be considered. Samples should be taken from various points within the material, if the material stratifies. [Pg.367]

In finite boundary conditions the solute molecule is surrounded by a finite layer of explicit solvent. The missing bulk solvent is modeled by some form of boundary potential at the vacuum/solvent interface. A host of such potentials have been proposed, from the simple spherical half-harmonic potential, which models a hydrophobic container [22], to stochastic boundary conditions [23], which surround the finite system with shells of particles obeying simplified dynamics, and finally to the Beglov and Roux spherical solvent boundary potential [24], which approximates the exact potential of mean force due to the bulk solvent by a superposition of physically motivated tenns. [Pg.100]

It is possible to go beyond the SASA/PB approximation and develop better approximations to current implicit solvent representations with sophisticated statistical mechanical models based on distribution functions or integral equations (see Section V.A). An alternative intermediate approach consists in including a small number of explicit solvent molecules near the solute while the influence of the remain bulk solvent molecules is taken into account implicitly (see Section V.B). On the other hand, in some cases it is necessary to use a treatment that is markedly simpler than SASA/PB to carry out extensive conformational searches. In such situations, it possible to use empirical models that describe the entire solvation free energy on the basis of the SASA (see Section V.C). An even simpler class of approximations consists in using infonnation-based potentials constructed to mimic and reproduce the statistical trends observed in macromolecular structures (see Section V.D). Although the microscopic basis of these approximations is not yet formally linked to a statistical mechanical formulation of implicit solvent, full SASA models and empirical information-based potentials may be very effective for particular problems. [Pg.148]

The idea of a finite simulation model subsequently transferred into bulk solvent can be applied to a macromolecule, as shown in Figure 5a. The alchemical transformation is introduced with a molecular dynamics or Monte Carlo simulation for the macromolecule, which is solvated by a limited number of explicit water molecules and otherwise surrounded by vacuum. Then the finite model is transferred into a bulk solvent continuum... [Pg.188]

Another variant that may mrn out to be the method of choice performs the alchemical free energy simulation with a spherical model surrounded by continuum solvent, neglecting portions of the macromolecule that lie outside the spherical region. The reaction field due to the outer continuum is easily included, because the model is spherical. Additional steps are used to change the dielectric constant of that portion of the macromolecule that lies in the outer region from its usual low value to the bulk solvent value (before the alchemical simulation) and back to its usual low value (after the alchemical simulation) the free energy for these steps can be obtained from continuum electrostatics [58]. [Pg.189]

Plus effect of bulk solvent [87JCS(P2)617j. [Pg.23]

The desired average is simply obtained by a time average of the given property. For example, one of the interesting properties of bulk solvents is the radial distribution function (rdf), which expresses the probability of finding a given atom type around a reference atom by... [Pg.79]

The silica gel surface is extremely polar and, as a result, must often be deactivated with a polar solvent such as ethyl acetate, propanol or even methanol. The bulk solvent is usually an n-alkane such as n-heptane and the moderators (the name given to the deactivating agents) are usually added at concentrations ranging from 0.5 to 5% v/v. Silica gel is very effective for separating polarizable materials such as the aromatic hydrocarbons, nitro hydrocarbons (aliphatic and aromatic), aliphatic ethers, aromatic esters, etc. When separating polarizable substances as opposed to substances with permanent dipoles, mixtures of an aliphatic hydrocarbon with a chlorinated hydrocarbon such as chlorobutane or methylene dichloride are often used as the mobile... [Pg.304]

A new acidity scale has been developed based on calorimetric measurement of A-methylimidazole and A-methylpyrrole in bulk solvents. A revised version of this method was shown to give better results in some cases. Another scale of solvent acidities was developed based on the hydrogen-bond donor acidities in aqueous DMSO. ... [Pg.336]

Example 13.6 The following data were obtained using low-conversion batch experiments on the bulk (solvent-free), free-radical copol)mierization of styrene (X) and acrylonitrile (Y). Determine the copolymer reactivity ratios for this pol5Tnerization. [Pg.489]

The structure of these globular aggregates is characterized by a micellar core formed by the hydrophilic heads of the surfactant molecules and a surrounding hydrophobic layer constituted by their opportunely arranged alkyl chains whereas their dynamics are characterized by conformational motions of heads and alkyl chains, frequent exchange of surfactant monomers between bulk solvent and micelle, and structural collapse of the aggregate leading to its dissolution, and vice versa [2-7]. [Pg.474]

The main peculiarity of solutions of reversed micelles is their ability to solubilize a wide class of ionic, polar, apolar, and amphiphilic substances. This is because in these systems a multiplicity of domains coexist apolar bulk solvent, the oriented alkyl chains of the surfactant, and the hydrophilic head group region of the reversed micelles. Ionic and polar substances are hosted in the micellar core, apolar substances are solubilized in the bulk apolar solvent, whereas amphiphilic substances are partitioned between the bulk apolar solvent and the domain comprising the alkyl chains and the surfactant polar heads, i.e., the so-called palisade layer [24],... [Pg.475]

Moreover, stable liquid systems made up of nanoparticles coated with a surfactant monolayer and dispersed in an apolar medium could be employed to catalyze reactions involving both apolar substrates (solubilized in the bulk solvent) and polar and amphiphilic substrates (preferentially encapsulated within the reversed micelles or located at the surfactant palisade layer) or could be used as antiwear additives for lubricants. For example, monodisperse nickel boride catalysts were prepared in water/CTAB/hexanol microemulsions and used directly as the catalysts of styrene hydrogenation [215]. [Pg.491]

A CRO may also allow for the in-house introduction of specialized lipophilic scales by transferring routine measurements. While the octanol-water scale is widely applied, it may be advantageous to utilize alternative scales for specific QSAR models. Solvent systems such as alkane or chloroform and biomimetic stationary phases on HPLC columns have both been advocated. Seydel [65] recently reviewed the suitabihty of various systems to describe partitioning into membranes. Through several examples, he concludes that drug-membrane interaction as it relates to transport, distribution and efficacy cannot be well characterized by partition coefficients in bulk solvents alone, including octanol. However, octanol-water partition coefficients will persist in valuable databases and decades of QSAR studies. [Pg.420]

The modification by method 2 is more acceptable. Although several types of modifications have been reported, Abraham and Liszi [15] proposed one of the simplest and well-known modifications. Figure 2(b) shows the proposed one-layer model. In this model, an ion of radius r and charge ze is surrounded by a local solvent layer of thickness b — r) and dielectric constant ej, immersed in the bulk solvent of dielectric constant ),. The thickness (b — r) of the solvent layer is taken as the solvent radius, and its dielectric constant ej is supposed to become considerably lower than that of the bulk solvent owing to dielectric saturation. The electrostatic term of the ion solvation energy is then given by... [Pg.41]

The solubility-diffusion theory assumes that solute partitioning from water into and diffusion through the membrane lipid region resembles that which would occur within a homogeneous bulk solvent. Thus, the permeability coefficient, P, can be expressed as... [Pg.816]


See other pages where Bulk solvent is mentioned: [Pg.176]    [Pg.2592]    [Pg.137]    [Pg.448]    [Pg.199]    [Pg.74]    [Pg.98]    [Pg.141]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.189]    [Pg.189]    [Pg.191]    [Pg.237]    [Pg.491]    [Pg.403]    [Pg.280]    [Pg.129]    [Pg.476]    [Pg.479]    [Pg.44]    [Pg.414]    [Pg.415]    [Pg.416]    [Pg.816]    [Pg.205]    [Pg.727]    [Pg.749]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.12 , Pg.141 ]




SEARCH



Bulk organic solvents

Bulk solvent effect

Bulk solvent mixture

Bulk solvent region

Enzymes do Function Without Water as a Bulk Solvent- Lessons from Extreme Halophiles

Hydrogenation bulk phase, solvent-free systems

Mixed solvent bulk dielectric constants

Solvent bulk dielectric constants

Solvent effects bulk reaction

Solvent electrode bulk dielectric

Solvents bulk properties

© 2024 chempedia.info