Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monodisperse droplets

Dropsize Distribution Monodisperse (nearly uniform droplet size) fogs can be grown by providing a long retention time for growth. However, industrial fogs usually show a broad distribution, as in Fig. 14-91. Note also that for this set of data, the sizes are several orders of magnitude smaller than those shown earlier for entrainment and atomizers. [Pg.1414]

The second step in the production of monodispersed polymer particles involves the swelling of activated particles with a monomer or a mixture of monomers, diluents, and porogens, and the shape of the swollen oil droplets must be maintained in the continuous aqueous phase. The monomer or the mixture of monomers may be added in bulk form, preferably as an aqueous dispersion to increase the rate of swelling, especially in the case of relatively water-insoluble monomers. [Pg.17]

SuGiURA, S., Nakajima, M., Seki, M., Monodispersed droplet formation caused by intetfacial tension from microfabricated channel array, in Matlosz, M., Eheeeld,... [Pg.123]

Recently it has been reported that even colloidal particle suspensions themselves, without added polymers, can form dissipative structures. Periodic stripes of colloidal particles (monodisperse particles of diameter 30 nm and 100 nm, respectively) and polystyrene particles (monodisperse diameters from 0.5 to 3 pm) can be formed from dilute aqueous suspensions. The stripes are parallel to the receding direction of the edge of the suspension droplet and thus indicate that a fingering instability... [Pg.193]

The rates of multiphase reactions are often controlled by mass tran.sfer across the interface. An enlargement of the interfacial surface area can then speed up reactions and also affect selectivity. Formation of micelles (these are aggregates of surfactants, typically 400-800 nm in size, which can solubilize large quantities of hydrophobic substance) can lead to an enormous increase of the interfacial area, even at low concentrations. A qualitatively similar effect can be reached if microemulsions or hydrotropes are created. Microemulsions are colloidal dispersions that consist of monodisperse droplets of water-in-oil or oil-in-water, which are thermodynamically stable. Typically, droplets are 10 to 100 pm in diameter. Hydrotropes are substances like toluene/xylene/cumene sulphonic acids or their Na/K salts, glycol.s, urea, etc. These. substances are highly soluble in water and enormously increase the solubility of sparingly. soluble solutes. [Pg.9]

In the past few years, a range of solvation dynamics experiments have been demonstrated for reverse micellar systems. Reverse micelles form when a polar solvent is sequestered by surfactant molecules in a continuous nonpolar solvent. The interaction of the surfactant polar headgroups with the polar solvent can result in the formation of a well-defined solvent pool. Many different kinds of surfactants have been used to form reverse micelles. However, the structure and dynamics of reverse micelles created with Aerosol-OT (AOT) have been most frequently studied. AOT reverse micelles are monodisperse, spherical water droplets [32]. The micellar size is directly related to the water volume-to-surfactant surface area ratio defined as the molar ratio of water to AOT,... [Pg.411]

The droplet size delivered from a vibrating orifice monodisperse aerosol generator can be derived from the following expressions ... [Pg.495]

A limited number of polyanion-polycation systems were tested using a droplet/falling annulus method (Fig. 4). This technique, which has been described elsewhere [64] reduces the net impact velocity between the droplet with the oppositely charged counterion fluid. A stream of droplets was directed into a collapsing annular liquid sheet. By matching the velocities of the droplet and sheets, the impact conditions can be moderated. It has been shown to produce monodisperse spherical capsules, though it requires several days of calibration for each new system and is obviously not practical for a massive screening such as was carried out herein. [Pg.32]

The mass flux arising from the evaporation of liquid droplets is significant to fire scaling applications. Such scaling has been demonstrated by Heskestad [11], and specific results will be discussed later. As a first approximation, independent monodispersed droplets of spherical diameter, D, and particle volume density, can be considered. [Pg.386]

An attractive feature of rotary atomization is the nearly uniform droplets produced with small disks at high rotational speeds and low liquid flow rates. Therefore, rotary atomization is probably the most generally successful method for producing moderately monodisperse sprays over a wide range of droplet sizes. The mean... [Pg.46]

In an evaluation of various techniques for droplet generation,1[88] periodic vibration of liquid jet, spinning disk and ultrasonic atomization techniques have been rated as the most appropriate methods for producing monodisperse sprays. These techniques were found to be very effective and appeared promising for refinement,... [Pg.62]

It should be noted that some problems may arise in the techniques or devices for producing monodisperse or near-monodis-perse sprays. One of the problems is droplet coalescence. Initially uniform droplets may coalesce rapidly to create doublets or triplets, particularly in a dense and turbulent spray, deteriorating the monodispersity of the droplets. This problem may be lessened by using appropriate dispersion air around the spray.[88] Another problem is non-spherical droplet shapes that make estimations of monodispersity difficult. [Pg.63]

However, a monodisperse spray seldom exists in reality and is difficult to produce, although it can be defined mathematically as a spray consisting of droplets of the same size. Hence, a monodisperse spray usually refers to a spray in which droplets are very narrowly distributed. However, it is merely a relative term since a droplet size distribution that is sufficiently narrow in one application may be... [Pg.239]

Similar investigations have been carried out on water in oil microemulsions. A microemulsion is a clear, transparent, and stable system consisting of essentially monodisperse oil in water (OAV) or water in oU (W/O) droplets with diameters generally in the range of 10-200 nm. Microemulsions are transparent because of their small particle size, they are spherical aggregates of oil or water dispersed in the other liquid, and they are stabilized by an interfacial film of one or more surfactants. [Pg.319]

The model system used by Mabille et al. [149, 150] was a set of monodisperse dilute (2.5 wt% of dispersed oil) emulsions of identical composition, whose mean size ranged from 4 p.m to 11 p.m. A sudden shear of 500 s was applied by means of a strain-controlled rheometer for durations ranging from 1 to 1500 s. All the resulting emulsions were also monodisperse. At such low oil droplet fraction, the emulsion viscosity was mainly determined by that of the continuous phase (it was checked that the droplet size had no effect on the emulsion viscosity). The viscosity ratio p = t]a/t]c = 0.4 and the interfacial tension yi t = 6 mN/m remained constant. [Pg.21]


See other pages where Monodisperse droplets is mentioned: [Pg.328]    [Pg.506]    [Pg.513]    [Pg.142]    [Pg.548]    [Pg.403]    [Pg.525]    [Pg.33]    [Pg.234]    [Pg.293]    [Pg.150]    [Pg.41]    [Pg.212]    [Pg.422]    [Pg.22]    [Pg.50]    [Pg.58]    [Pg.59]    [Pg.63]    [Pg.240]    [Pg.420]    [Pg.426]    [Pg.353]    [Pg.204]    [Pg.1]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.8]    [Pg.20]    [Pg.20]    [Pg.26]    [Pg.28]   
See also in sourсe #XX -- [ Pg.232 , Pg.240 ]




SEARCH



Electrosprays monodisperse droplets

Monodisperse droplet stream

Monodispersed

Monodispersivity

© 2024 chempedia.info