Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectroscopy Fourier Transform technique

Fourier transformation techniques in spectroscopy are now quite common—the latest to arrive on the scene is Fourier transform Raman spectroscopy. In Chapter 3 1 have expanded considerably the discussion of these techniques and included Fourier transform Raman spectroscopy for the first time. [Pg.468]

Most chemists tend to think of infrared (IR) spectroscopy as the only form of vibrational analysis for a molecular entity. In this framework, IR is typically used as an identification assay for various intermediates and final bulk drug products, and also as a quantitative technique for solution-phase studies. Full vibrational analysis of a molecule must also include Raman spectroscopy. Although IR and Raman spectroscopy are complementary techniques, widespread use of the Raman technique in pharmaceutical investigations has been limited. Before the advent of Fourier transform techniques and lasers, experimental difficulties limited the use of Raman spectroscopy. Over the last 20 years a renaissance of the Raman technique has been seen, however, due mainly to instrumentation development. [Pg.60]

Probing Metalloproteins Electronic absorption spectroscopy of copper proteins, 226, 1 electronic absorption spectroscopy of nonheme iron proteins, 226, 33 cobalt as probe and label of proteins, 226, 52 biochemical and spectroscopic probes of mercury(ii) coordination environments in proteins, 226, 71 low-temperature optical spectroscopy metalloprotein structure and dynamics, 226, 97 nanosecond transient absorption spectroscopy, 226, 119 nanosecond time-resolved absorption and polarization dichroism spectroscopies, 226, 147 real-time spectroscopic techniques for probing conformational dynamics of heme proteins, 226, 177 variable-temperature magnetic circular dichroism, 226, 199 linear dichroism, 226, 232 infrared spectroscopy, 226, 259 Fourier transform infrared spectroscopy, 226, 289 infrared circular dichroism, 226, 306 Raman and resonance Raman spectroscopy, 226, 319 protein structure from ultraviolet resonance Raman spectroscopy, 226, 374 single-crystal micro-Raman spectroscopy, 226, 397 nanosecond time-resolved resonance Raman spectroscopy, 226, 409 techniques for obtaining resonance Raman spectra of metalloproteins, 226, 431 Raman optical activity, 226, 470 surface-enhanced resonance Raman scattering, 226, 482 luminescence... [Pg.457]

Metal oxides have surface sites which are acidic, basic, or both and these characteristics control important properties such as lubrication, adhesion, and corrosion. Some of the newer infrared techniques such as lazer-Raman and Fourier transform infrared reflection spectroscopy are important tools for assessing just how organic acids and bases interact with the oxide films on metal surfaces. Illustrations are given for the adsorption of acidic organic species onto aluminum or iron surfaces, using Fourier transform infrared reflection spectroscopy. [Pg.79]

The IR and Raman spectra of partially hydrated proteins are a rich source of fundamental information on both water and protein species, owing to the sensitivity of vibrational modes to hydrogen bonding. The similar chemistry of water—water and water—peptide interactions requires that there be great accuracy in spectroscopic measurements of the hydration process. Since the review of the field by Kuntz and Kauz-mann (1974), the Fourier transform technique for IR and the tunable laser for Raman spectroscopy have offered important improvements in methodology. [Pg.107]

GC- and LC-MS (Fig. 2), although others have also used other techniques including Fourier transform infrared spectroscopy, thin layer chromatography, high-pressure liquid chromatography, and Raman spectroscopy. The major techniques as judged by current number of publications will be discussed below. [Pg.2162]

The secondary structure of proteins may also be assessed using vibrational spectroscopy, fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy both provide information on the secondary structure of proteins. The bulk of the literature using vibrational spectroscopy to study protein structure has involved the use of FTIR. Water produces vibrational bands that interfere with the bands associated with proteins. For this reason, most of the FTIR literature focuses on the use of this technique to assess structure in the solid state or in the presence of non-aqueous environments. Recently, differential FTIR has been used in which a water background is subtracted from the FTIR spectrum. This workaround is limited to solutions containing relatively high protein concentrations. [Pg.305]

As described in the following sections, IR and Raman spectroscopy, using modem Fourier transform techniques such as IR microspectroscopy, offer excellent analytical tools for the burgeoning field of combinatorial chemistry. [Pg.66]

VIBRATIONAL SPECTROSCOPY Infrared and Raman spectroscopies have proven to be useful techniques for studying the interactions of ions with surfaces. Direct evidence for inner-sphere surface complex formation of metal and metalloid anions has come from vibrational spectroscopic characterization. Both Raman and Fourier transform infrared (FTIR) spectroscopies are capable of examining ion adsorption in wet systems. Chromate (Hsia et al., 1993) and arsenate (Hsia et al., 1994) were found to adsorb specifically on hydrous iron oxide using FTIR spectroscopy. Raman and FTIR spectroscopic studies of arsenic adsorption indicated inner-sphere surface complexes for arsenate and arsenite on amorphous iron oxide, inner-sphere and outer-sphere surface complexes for arsenite on amorphous iron oxide, and outer-sphere surface complexes for arsenite on amorphous aluminum oxide (Goldberg and Johnston, 2001). These surface configurations were used to constrain the surface complexes in application of the constant capacitance and triple layer models (Goldberg and Johnston, 2001). [Pg.242]

Framework and Surfaces Since compositions and structures are very diverse, surface and framework properties are also extremely varied. In terms of compositions, coordination, and chemical environments, several methods are particularly informative for the characterization of nanoporous solids, such as nuclear magnetic resonance methods (NMR), UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray absorption spectroscopies, x-ray photoelectron emission spectroscopy (XPS), and electron paramagnetic resonance (EPR) (4, 6). Among them, sohd state NMR techniques arc largely employed and will be briefly described in the following. [Pg.256]

Fourier transform techniques in spectroscopy [5-7] that are useful in chemistry include all kinds of spectroscopy, in particular, infrared spectroscopy [8] and Raman spectroscopy [9], mass spectrometry, nuclear magnetic resonance spectroscopy [10], and X-ray crystallography [11],... [Pg.435]

Chapter 5 addresses the concept of the Fourier transform technique without going into mathematical details. The advantages of the technique and the artefacts connected with it are discussed. These include such issues as apodization function, zerofilling, phase correction, and acquisition mode, which are important for an understanding of the measuring process. For Raman spectroscopy, the rivalry between dispersive and FT techniques is also considered. [Pg.2]

As is evident from the various results discussed above, there is no general consensus regarding the location of titanium inside the MFI structure, notwithstanding more than a decade of research on this question. To characterize TS-1 and determine the titanium location, UV—vis, Raman, and Fourier transform infrared (FTIR) spectroscopy, EXAFS analysis. X-ray and neutron diffraction, and ah initio DFT calculations have aU been used. Some of the analytical difficulties encountered are associated with properties inherent to titanium, and the situation is better when the heteroatom has a higher atomic number such as tin. In this case, characterization techniques that depend strongly on the atomic number such as EXAFS analysis can be used to precisely define the site in the framework that is occupied by the heteroatom (see Section 2.4). [Pg.29]

FTIR is similar to Raman spectroscopy in that it also uses molecular bond vibration for chemical species identification. In particular, though, in EUR the resonant frequency of bond vibration after exposure to infrared radiation is detected as an identifier for the species under examination. Fourier transform techniques are based on measurement of... [Pg.80]

One important use of SFG vibrational spectroscopy is the orientational analysis of ionic liquids at gas-liquid interfaces. For example, the study of the structural orientation ofionic liquids using common cation types, that is, [BMIM], combined with different anions, gives information on the effects of both cation and anion types [3, 22, 26-28]. Additional surface analytical work includes SFG studies under vacuum conditions for probing the second-order susceptibility tensor that depends on the polar orientation of the molecule and can be correlated to the measured SFG signal intensities. Supporting information is frequently obtained by complementary bulk spectroscopic techniques, such as Raman and Fourier transform infrared (FTIR) analysis, for the analysis of the pure ionic liquids. [Pg.148]

In mid-infrared spectroscopy, Fourier transform instruments are used almost exclusively. However, in Raman spectroscopy both conventional dispersive and Fourier transform techniques have their applications, the choice being governed by several factors [133], [134]. Consequently, a modern Raman laboratory is equipped with both Fourier transform and CCD-based dispersive instruments. For a routine fingerprint analysis, the FT system is generally used, because it requires less operator skill and is quicker to set up the FT system is also be tried first if samples are highly fluorescent or light sensitive. However, if the utmost sensitivity is required, or if Raman lines with a shift smaller than 100 cm" are to be recorded, conventional spectrometers are usually preferred. [Pg.499]

X-ray analysis methods (including diffraction and reflectometry) described in Chap. 1 are the most widely used tools for the identification of crystalline properties of materials, in addition to materials strain, texture, stress, density, and surface roughness—properties that are key parameters for various industrial applications. Chapter 2 covers a wide range of optical characterization techniques with focus on ellipsometry, Raman scattering, Fourier transform infrared spectroscopy, and spectrophotometry. Those methods, covering a wide range of photon energy and laser... [Pg.243]


See other pages where Raman spectroscopy Fourier Transform technique is mentioned: [Pg.432]    [Pg.71]    [Pg.51]    [Pg.129]    [Pg.344]    [Pg.148]    [Pg.224]    [Pg.469]    [Pg.10]    [Pg.150]    [Pg.221]    [Pg.148]    [Pg.52]    [Pg.6471]    [Pg.132]    [Pg.221]    [Pg.1503]    [Pg.8]    [Pg.37]    [Pg.97]    [Pg.427]    [Pg.66]    [Pg.515]    [Pg.108]    [Pg.1200]    [Pg.6470]    [Pg.80]    [Pg.2189]    [Pg.8277]    [Pg.269]    [Pg.47]    [Pg.1431]   
See also in sourсe #XX -- [ Pg.228 , Pg.249 , Pg.252 , Pg.257 , Pg.262 ]




SEARCH



Fourier spectroscopy

Fourier transform Raman

Fourier transform Raman spectroscopy

Fourier transform Raman techniques

Fourier transform spectroscopy

Fourier-transform techniques

Raman techniques

Spectroscopy techniques

Transformation techniques

© 2024 chempedia.info