Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemates enantioseparation

Fig. 3-7. Evaluation of a focused library of 71 DNB-dipeptide CSPs for enantioseparation of the test racemate 8. (Reprinted with permission from ref. [86], Copyright 1999, American Chemical Society.)... Fig. 3-7. Evaluation of a focused library of 71 DNB-dipeptide CSPs for enantioseparation of the test racemate 8. (Reprinted with permission from ref. [86], Copyright 1999, American Chemical Society.)...
Discrimination between the enantiomers of a racemic mixture is a complex task in analytical sciences. Because enantiomers differ only in their structural orientation, and not in their physico-chemical properties, separation can only be achieved within an environment which is unichiral. Unichiral means that a counterpart of the race-mate to be separated consists of a pure enantiomeric form, or shows at least enrichment in one isomeric form. Discrimination or separation can be performed by a wide variety of adsorption techniques, e.g. chromatography in different modes and electrophoresis. As explained above, the enantioseparation of a racemate requires a non-racemic counterpart, and this can be presented in three different ways ... [Pg.185]

This presentation covers some aspects of stereochemistry of the drags that are marketed and administered as racemic mixtures with an emphasis on status of analytical chemistry methods for enantioseparation and control of enantiomeric purity. There is also a brief discussion on related historical knowledge. [Pg.32]

This report presents various methods developed primarily at our laboratory for chromatographic resolution of racemates of several pharmaceuticals (e.g., -blockers, NSAIDS, anta-acids, DL-amino acids, Bupropion, Baclofen, Etodolac, Carnitine, Mexiletine). Recently, we developed methods for establishing molecular dissymmetry and determining absolute configuration of diastereomers (and thus the enantiomers) of (/< .S )-Baclofcn, (/d.SJ-Bctaxolol with complimentary application of TLC, HPLC, H NMR, LCMS this ensured the success of diastereomeric synthesis and the reliability of enantioseparation. [Pg.32]

Keywords enantioseparation, racemic mixtures, single enantiomer of drug, chromatography, chromatographic resolution. [Pg.32]

Aboul-Enein, H.Y and Ali, I., Optimization strategies for HPLC enantioseparation of racemic drugs using polysaccharides and macrocyclic antibiotic chiral stationary phases, II Farmaco, 57, 513, 2002. [Pg.165]

In a comparative study of 102 racemates of pharmaceutical interest with the three techniques, HPLC, CE, and SEC, HPLC was found to have the highest coverage of enantioseparation [64]. The authors state that this probably arose partly as a result of a higher variety of phases being commercially available for HPLC. The phases with the widest application ranges in that study were found to be Chiralpak AD and Chiralcel OD and OJ (i.e., polysaccharide phases). [Pg.511]

Kinetic resolutions by means of the selective formation or hydrolysis of an ester group in enzyme-catalyzed reactions proved to be a successful strategy in the enantioseparation of 1,3-oxazine derivatives. Hydrolysis of the racemic laurate ester 275 in the presence of lipase QL resulted in formation of the enantiomerically pure alcohol derivative 276 besides the (23, 3R)-enantiomer of the unreacted ester 275 (Equation 25) <1996TA1241 >. The porcine pancreatic lipase-catalyzed acylation of 3-(tu-hydroxyalkyl)-4-substituted-3,4-dihydro-2/7-l,3-oxazines with vinyl acetate in tetrahydrofuran (THF) took place in an enantioselective fashion, despite the considerable distance of the acylated hydroxy group and the asymmetric center of the molecule <2001PAC167, 2003IJB1958>. [Pg.410]

An efficient and simple kinetic resolution of the racemic Betti base 387 was achieved via its reaction with acetone in the presence of L-(- -)-tartaric acid. When a suspension of racemic 387 in acetone was treated with L-(- -)-tartaric acid, the (A)-enantiomer formed a crystalline L-tartrate salt 389 this was filtered off, and the (iJ)-enantiomer could be isolated as a naphth[l,2-< ]oxazine derivative 388 from the filtrate (Equation 41). Both enantiomers were obtained in excellent yields and ee s. The enantioseparation is presumed to take place via a kinetically controlled N,0-deketalization of the (3)-naphth[l,2-< ]oxazine derivative <2005JOC8617>. An improved method for the enantioseparation of 387 was developed by the reaction of the ring-chain tautomeric l,3-diphenyl-3,4-dihydro-2//-naphth[2,l-< ][l,3]oxazine (41 X, Y = H) and L-(-f)-tartaric acid, yielding the crystalline 389 in 85% yield <2007SL488>. [Pg.424]

Cass et al. [66] used a polysaccharide-based column on multimodal elution for the separation of the enantiomers of omeprazole in human plasma. Amylose tris (3,5-dimethylphenylcarbamate) coated onto APS-Hypersil (5 /im particle size and 120 A pore size) was used under normal, reversed-phase, and polar-organic conditions for the enantioseparation of six racemates of different classes. The chiral stationary phase was not altered when going from one mobile phase to another. All compounds were enantioresolved within the elution modes with excellent selectivity factor. The separation of the enantiomers of omeprazole in human plasma in the polar-organic mode of elution is described. [Pg.217]

Cass et al. [71] described a direct injection HPLC method, with column-switching, for the determination of omeprazole enantiomers in human plasma. A restricted access media of bovine serum albumin octyl column has been used in the first dimension for separation of the analyte from the biological matrix. The omeprazole enantiomers were eluted from the restricted access media column onto an amylose tris (3,5-dimethylphenylcarbamate) chiral column by the use of a columnswitching valve and the enantioseparation was performed using acetonitrile-water (60 40) as eluent. The analytes were detected by their UV absorbance at 302 nm. The validated method was applied to the analysis of the plasma samples obtained from 10 Brazilian volunteers who received a 40-mg oral dose of racemic omeprazole and was able to quantify the enantiomers of omeprazole in the clinical samples analyzed. [Pg.218]

Olsson and Blomberg [141] enantioseparated omeprazole and its metabolite 5-hydroxyomeprazole using open tubular capillary electrochromatography with immobilized avidin as chiral selector. The separation was performed with open tubular capillary electrochromatography. The protein avidin was used as the chiral selector. Avidin was immobilized by a Schiffs base type of reaction where the protein was via glutral-dehyde covalently bonded to the amino-modified wall of a fused-silica capillary, 50 /an i.d. Both racemates were baseline resolved. Resolution... [Pg.239]

Aboul-Enein, H. and Ali, I. (2002) Optimization Strategies for HPLC Enantioseparation of Racemic Drugs Using Polysaccharides and Macrocyclic Glycopeptide Antibiotic Chiral Stationary Phases, Farmaco 57, 513-529. [Pg.363]

The chemical and more importantly biological activity of any chiral substance depends on its stereochemistry. That is why the design, synthesis, and structure-activity relationships of enantioselective receptors are still very vital areas of research. Chiral synthetic ligands are supposed to open new possibilities in enantioselective catalysis and enantioseparations of racemic chiral compounds, they can be active in different parts of membrane transport and, finally, they can help us in understanding many vital processes in the biological world. [Pg.32]

Figure 21-15. Schematic of a true moving bed for the enantioseparation of a racemate on a CSP. Figure 21-15. Schematic of a true moving bed for the enantioseparation of a racemate on a CSP.
Co(acac)3 is frequently used as a probe for enantioseparation efficiency of col-umns " . A monolytic capillary silica gel column was functionalized with methacrylate residues in two steps, as shown in equation and then it was impregnated with cellulose or amylose (51a, b) which was modified so that 30% of the R groups were the methacrylate group 52 and the rest was identical to R (53). For further stability of the column, the polymeric modifier was immobilized on the silica gel by in situ copolymerization with an olefinic monomer such as 2,3-dimethylbutadiene. Only the column containing cellulose modified as in 51a was able to separate the Co(acac)3 racemic mixture, whereas neither cellulose nor amylose modified as in 51b did, although they were successful in resolving other racemic mixtures ° °. ... [Pg.712]

Chromatographic enantioseparation of chiral xenobiotics and their metabolites is a versatile tool for process studies in marine and terrestrial ecosystems [235]. In 1994, three papers focused on the enantioselective determination of toxaphene components [120,236,237]. Buser and Muller found that technical toxaphene mixtures are not necessarily racemic [237]. This observation was supported after isolation of non-racemic B7-1453 from the product Melipax which had an excess of ca. 25% of the dextrorotary enantiomer [27, 238]. The enantioselective separation of toxaphene components is almost restricted to chiral stationary phases (CSPs) based on randomly derivatized ferf-butyldimethyl-silylated /1-cyclodextrin (commercially available from BGB Analytik, Adliswil, Switzerland). So far, only a few toxaphene components were enantioseparated on other CSPs [239, 240]. Some of these CSPs are not well defined as well, and for this reason a test mixture called CHIROTEST X was suggested for initial column testing [241],... [Pg.277]

It was found that the most abundant congeners B8-1413 (P-26) and B9-1679 (P-50) were nearly racemic, even in tissue from the top level of aquatic food webs such as marine mammals and birds. A few studies, however, mentioned that enantiomer ratios of less persistent toxaphene components significantly deviated from 1.0 [239,242,243]. However, the enantioseparation of less abundant components in sample extracts is more difficult than that of B8-1413 (P-26) and B9-1679 (P-50). Suitable strategies to avoid compound interferences are preseparation by liquid chromatography, multidimensional GC, and MS/MS. [Pg.277]


See other pages where Racemates enantioseparation is mentioned: [Pg.60]    [Pg.74]    [Pg.83]    [Pg.74]    [Pg.88]    [Pg.97]    [Pg.17]    [Pg.123]    [Pg.151]    [Pg.24]    [Pg.197]    [Pg.329]    [Pg.329]    [Pg.29]    [Pg.51]    [Pg.93]    [Pg.106]    [Pg.162]    [Pg.180]    [Pg.196]    [Pg.316]    [Pg.310]    [Pg.26]    [Pg.26]    [Pg.243]    [Pg.98]    [Pg.1023]    [Pg.117]    [Pg.711]    [Pg.163]   
See also in sourсe #XX -- [ Pg.287 ]

See also in sourсe #XX -- [ Pg.287 ]

See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Enantioseparation

Process Research on the Enantioseparation of Racemates by Diastereomeric Salt Formation

© 2024 chempedia.info