Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative analysis, specificity

Examples that use Raman spectroscopy in the quantitative analysis of materials are enonnous. Technology that takes Raman based techniques outside the basic research laboratory has made these spectroscopies also available to industry and engineering. It is not possible here to recite even a small portion of applications. Instead we simply sketch one specific example. [Pg.1217]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

For quantitative analysis, the resolution of the spectral analyzer must be significantly narrower than the absorption lines, which are - 0.002 nm at 400 nm for Af = 50 amu at 2500°C (eq. 4). This is unachievable with most spectrophotometers. Instead, narrow-line sources specific for each element are employed. These are usually hoUow-cathode lamps, in which a cylindrical cathode composed of (or lined with) the element of interest is bombarded with inert gas cations produced in a discharge. Atoms sputtered from the cathode are excited by coUisions in the lamp atmosphere and then decay, emitting very narrow characteristic lines. More recendy semiconductor diode arrays have been used for AAS (168) (see Semiconductors). [Pg.317]

Because X-ray counting rates are relatively low, it typically requires 100 seconds or more to accumulate adequate counting statistics for a quantitative analysis. As a result, the usual strategy in applying electron probe microanalysis is to make quantitative measurements at a limited collection of points. Specific analysis locations are selected with the aid of a rapid imaging technique, such as an SEM image prepared with backscattered electrons, which are sensitive to compositional variations, or with the associated optical microscope. [Pg.187]

In a modern industrialised society the analytical chemist has a very important role to play. Thus most manufacturing industries rely upon both qualitative and quantitative chemical analysis to ensure that the raw materials used meet certain specifications, and also to check the quality of the final product. The examination of raw materials is carried out to ensure that there are no unusual substances present which might be deleterious to the manufacturing process or appear as a harmful impurity in the final product. Further, since the value of the raw material may be governed by the amount of the required ingredient which it contains, a quantitative analysis is performed to establish the proportion of the essential component this procedure is often referred to as assaying. The final manufactured product is subject to quality control to ensure that its essential components are present within a pre-determined range of composition, whilst impurities do not exceed certain specified limits. The semiconductor industry is an example of an industry whose very existence is dependent upon very accurate determination of substances present in extremely minute quantities. [Pg.3]

If there is any doubt as to the purity of the reagents used, they should be tested by standard methods for the impurities that might cause errors in the determinations. It may be mentioned that not all chemicals employed in quantitative analysis are available in the form of analytical reagents the purest commercially available products should, if necessary, be purified by known methods see below. The exact mode of drying, if required, will vary with the reagent details are given for specific reagents in the text. [Pg.105]

Analytical. The quantitative analysis of Minol II is given in US Military Specification MIL-M-14745 (MU), Amendment 1 (15 June 1972)... [Pg.157]

The quantitative analysis procedure involves benz extr of TNT, water extr of AN, and taking of the A1 content as insol residue. Moisture content is detd by the Karl Fischer method described in ASTM Method E203-62, except that 8 to lOg samples are added to methanol. Specific gravity is detd by water displacement, and workmanship by visual examination... [Pg.157]

The refractive index detector, in general, is a choice of last resort and is used for those applications where, for one reason or another, all other detectors are inappropriate or impractical. However, the detector has one particular area of application for which it is unique and that is in the separation and analysis of polymers. In general, for those polymers that contain more than six monomer units, the refractive index is directly proportional to the concentration of the polymer and is practically independent of the molecular weight. Thus, a quantitative analysis of a polymer mixture can be obtained by the simple normalization of the peak areas in the chromatogram, there being no need for the use of individual response factors. Some typical specifications for the refractive index detector are as follows ... [Pg.185]

Adourian U, Shampaine EL, Hirshman CA, Fuchs 49 E, Adkinson NF Jr High-titer protamine-specific IgG antibody associated with anaphylaxis report of a case and quantitative analysis of antibody in vasec-tomized men. Anesthesiology 1993 78 368-372. [Pg.97]

Unfortunately these and other existing quality control procedures do not answer aU problems. There remains a clear need for development of PCR reference materials that win provide information both on quality and quantity levels. For quality the reference materials should be host-specific and PCR primers, for positive control, may correspond to host specific house keeping genes e.g. b-actin. For quantitative analysis, fluorescence dyes in specific primers might be used in order to measure accurately the amount of DNA present. Such practices, and other as yet un-realized procedures, will be needed to achieve reliable results in the quantification of DNA analysis. [Pg.172]

HPLC is a very powerful technique for qualitative and quantitative analysis. In the support of process development, HPLC plays an important role in monitoring a reaction, since each reaction component can be quantitated. In this role, the HPLC method must be fast, rugged, and specific, capable of separating all reactants, products, and byproducts. Development of appropriate analytical methods is often a rate-limiting step in process development. [Pg.174]

General texts on GC are numerous [118,119] narrow-bore GC was addressed by van Es [120]. Sample introduction techniques and GC inlet systems have been reviewed [25,90] and split/splitless [121] and on-column injection [122] were considered specifically. Stationary phases [123], multiple detection [103], derivatisation [124,125], and quantitative analysis in GC [109] have been described. High-speed GC has recently been reviewed [126]. For a compendium of GC terms and techniques, see Hinshaw [127]. [Pg.195]

The results thus show that ammonia DCI-MS/MS using a triple quadrupole mass spectrometer is a convenient method for the detection of additives in PE samples. The softness and selectivity provided by ammonia DCI in combination with the specificity provided by CID, demonstrate great potential for identification of additives directly from PE extracts. The utility of DCI in the quantitative analysis of additives has still to be explored. DCI-MS/MS (B/E) with high collision... [Pg.366]

In direct insertion techniques, reproducibility is the main obstacle in developing a reliable analytical technique. One of the many variables to take into account is sample shape. A compact sample with minimal surface area is ideal [64]. Direct mass-spectrometric characterisation in the direct insertion probe is not very quantitative, and, even under optimised conditions, mass discrimination in the analysis of polydisperse polymers and specific oligomer discrimination may occur. For nonvolatile additives that do not evaporate up to 350 °C, direct quantitative analysis by thermal desorption is not possible (e.g. Hostanox 03, MW 794). Good quantitation is also prevented by contamination of the ion source by pyrolysis products of the polymeric matrix. For polymer-based calibration standards, the homogeneity of the samples is of great importance. Hyphenated techniques such as LC-ESI-ToFMS and LC-MALDI-ToFMS have been developed for polymer analyses in which the reliable quantitative features of LC are combined with the identification power and structure analysis of MS. [Pg.409]


See other pages where Quantitative analysis, specificity is mentioned: [Pg.236]    [Pg.236]    [Pg.287]    [Pg.55]    [Pg.180]    [Pg.548]    [Pg.284]    [Pg.71]    [Pg.415]    [Pg.79]    [Pg.104]    [Pg.855]    [Pg.207]    [Pg.140]    [Pg.163]    [Pg.314]    [Pg.53]    [Pg.206]    [Pg.291]    [Pg.317]    [Pg.364]    [Pg.1146]    [Pg.295]    [Pg.145]    [Pg.21]    [Pg.30]    [Pg.40]    [Pg.223]    [Pg.260]    [Pg.273]    [Pg.301]    [Pg.429]    [Pg.512]    [Pg.515]    [Pg.549]   
See also in sourсe #XX -- [ Pg.260 , Pg.261 ]




SEARCH



Specific Analysis

© 2024 chempedia.info