Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample introduction technique

Direct injection is the most commonly used technique for sample introduction in GC, typically using combined spht/splitless injectors. In split mode, a portion of the sample passes onto the column and the rest is directed to waste. After sufficient split time to completely flush the injector the split vent may be closed to save gas, although this is optional. The injector is set to a sufficiently high temperature to eliminate discrimination between analytes. The sensitivity of the technique is inversely proportional to the split ratio. [Pg.87]

Thermal stability and/or involatility of the main component can be a serious issue with direct injection techniques. At the very least, thermal degradants or involatiles can contaminate the injector and the head of the column, affecting the inertness of the system and causing deterioration in performance (both in recoveries due to adsorption and sensitivity and selectivity caused by peak tailing). [Pg.87]

In Other situations, degradation of the main component can lead to volatile components chromatographing and interfering with the analysis. In exceptional circumstances, the drug substance may thermally degrade to yield the analyte itself, thus making the analysis untenable. [Pg.88]

The advantage of headspace mode is that only volatile components that will not contaminate the GC are injected. InvolatUes do not partition into the headspace and so never enter the injector. Effectively, the analyte is decoupled from the influence of the drug (but see the discussion on validation below). However, many analytes that are amenable to GC by direct injection are not sufficiently volatile to give a high-enough vapour pressure to be detected by conventional headspace injection. These semi-volatile components can sometimes be successfully analysed using a variant of the headspace technique known as total vaporisation headspace injection. In this instance, a few microlitres of the sample solution are injected into the headspace vial, which is then incubated at a temperature that vaporises the solvent completely into the headspace. [Pg.88]

Some analytes are volatile enough to be analysed by GC, but too involatile to give sufficient sensitivity by headspace injection modes. In these cases, all may not be lost. The programmed temperature vaporiser (PTV) can provide a means of selectively injecting the desired analyte onto the column whilst excluding undesired components such as solvents and involatUes. This is variously known as selective extraction or selective exclusion. It permits large volume injections (LVI) and difficult matrix introduction (DMI). [Pg.89]


Therefore, if a large quantity of sample is introduced into the flame over a short period of time, the flame temperature will fall, thus interfering with the basic processes leading to the formation and operation of the plasma. Consequently introduction of samples into a plasma flame needs to be controlled, and there is a need for special sample-introduction techniques to deal with different kinds of samples. The major problem with introducing material other than argon into the plasma flame is that the additives can interfere with the process of electron formation, a basic factor in keeping the flame self-sustaining. If electrons are removed from the plasma by... [Pg.97]

Approximately 70 different elements are routinely determined using ICP-OES. Detection limits are typically in the sub-part-per-billion (sub-ppb) to 0.1 part-per-million (ppm) range. ICP-OES is most commonly used for bulk analysis of liquid samples or solids dissolved in liquids. Special sample introduction techniques, such as spark discharge or laser ablation, allow the analysis of surfaces or thin films. Each element emits a characteristic spectrum in the ultraviolet and visible region. The light intensity at one of the characteristic wavelengths is proportional to the concentration of that element in the sample. [Pg.633]

ICP-OES is one of the most successful multielement analysis techniques for materials characterization. While precision and interference effects are generally best when solutions are analyzed, a number of techniques allow the direct analysis of solids. The strengths of ICP-OES include speed, relatively small interference effects, low detection limits, and applicability to a wide variety of materials. Improvements are expected in sample-introduction techniques, spectrometers that detect simultaneously the entire ultraviolet—visible spectrum with high resolution, and in the development of intelligent instruments to further improve analysis reliability. ICPMS vigorously competes with ICP-OES, particularly when low detection limits are required. [Pg.643]

Perhaps a combination of fast, multi-dimensional GC and TOFMS together with LD sample introduction techniques offers the way forward for multi-residue analyses of food and environmental samples over the next few years. [Pg.741]

Gas chromatographic analysis starts with introduction of the sample on the column, with or without sample preparation steps. The choice of inlet system will be dictated primarily by the characteristics of the sample after any preparation steps outside the inlet. Clearly, sample preparation has a profound influence on the choice of injection technique. For example, analysts may skip the solvent evaporation step after extraction by eliminating solvent in the inlet with splitless transfer into the column. Sample introduction techniques are essentially of two types conventional and programmed temperature sample introduction. Vogt et al. [89] first described the latter in 1979. Injection of samples, which... [Pg.187]

General texts on GC are numerous [118,119] narrow-bore GC was addressed by van Es [120]. Sample introduction techniques and GC inlet systems have been reviewed [25,90] and split/splitless [121] and on-column injection [122] were considered specifically. Stationary phases [123], multiple detection [103], derivatisation [124,125], and quantitative analysis in GC [109] have been described. High-speed GC has recently been reviewed [126]. For a compendium of GC terms and techniques, see Hinshaw [127]. [Pg.195]

H.-G. Janssen, Sample Introduction Techniques for Capillary Gas Chromatography (Reference GI-12981), Gerstel Inc., Mulheim ad. Ruhr (1998). [Pg.279]

In Figure 8.12, the basic set-up of an ICP-MS instrument is presented as a block diagram, consisting of a sample introduction system, the inductively coupled argon plasma (ICP) and the mass-specific detector. By far the most commonly applied sample introduction technique is a pneumatic nebuliser, in which a stream of argon (typically 1 I.min ), expanding with high... [Pg.652]

The front-end arrangements used nowadays in conjunction with ICP-MS are tailored to the analytical problem at hand. Sample introduction techniques which... [Pg.653]

D. Beauchemin, D.C. Gregoire, D. Gunther, V. Karanassios, J.-M. Mermet and T.J. Woods (eds), Discrete Sample Introduction Techniques for Inductively Coupled Plasma Mass Spectrometry, Elsevier, Amsterdam (2000). [Pg.677]

Elemental Speciation - New Approaches for Trace Element Analysis Discrete Sample Introduction Techniques for Inductively Coupled Plasma Mass Spectrometry... [Pg.779]

Flow injection analysis is based on the injection of a liquid sample into a continuously flowing liquid carrier stream, where it is usually made to react to give reaction products that may be detected. FIA offers the possibility in an on-line manifold of sample handling including separation, preconcentration, masking and color reaction, and even microwave dissolution, all of which can be readily automated. The most common advantages of FIA include reduced manpower cost of laboratory operations, increased sample throughput, improved precision of results, reduced sample volumes, and the elimination of many interferences. Fully automated flow injection analysers are based on spectrophotometric detection but are readily adapted as sample preparation units for atomic spectrometric techniques. Flow injection as a sample introduction technique has been discussed previously, whereas here its full potential is briefly surveyed. In addition to a few books on FIA [168,169], several critical reviews of FIA methods for FAAS, GF AAS, and ICP-AES methods have been published [170,171]. [Pg.597]

Solid-phase microextraction (SPME). used as a sample introduction technique for high speed gc, utilizes small-diameter fused-silica fibers coated with polymeric stationary phase for sample extraction and concentration. SPME lias been utilized for determination of pollutants in aqueous solution by the adsorption of analyte onto stationary-phase coated fuscd-silica fibers, followed by thermal desorption in the injection system of a capillary gas chromatograph. Full automation can be achieved using an autosampler. [Pg.1626]

All fuel methods analyze GRO with a purge and trap sample introduction technique, whereas semi volatile diesel fuel and heavy, non-volatile motor oil (DRO and RRO) are first extracted from soil or water samples, and the extracts are injected into the analytical instrument. This distinction in sample preparation gave rise to the terms of total purgeable petroleum hydrocarbons (TPPH) or total volatile petroleum hydrocarbons (TVPH) and total extractable petroleum hydrocarbons (TEPH). A group of petroleum fuels with the carbon range of C7 to Cig may be analyzed with either technique. Common petroleum fuels and other petroleum products fall into these three categories as shown in Table 2.3. [Pg.60]

Chemicals are introduced into the column through the injection port at the head of the column. Two sample introduction techniques are predominant in environmental... [Pg.212]

GC-MIP systems have been investigated in considerable detail. Because of the low power of the plasma, it is easily quenched if the normal, atomic spectrometric sample introduction techniques, such as nebulisation, are used. Capillary columns overcome this problem as they require only low flow rates and small sample sizes more compatible with stable plasma operation. The capillary columns can be passed out of the oven, down a heated line, and the end of the column placed in the plasma torch just before the plasma, thus preventing any sample loss. A makeup gas is usually introduced via a side arm in the torch to sustain the plasma (Fig. 4.1, Greenway and Barnett, 1989). Other dopant gases can also be added in this way to prolong the lifetime of the torch and improve the plasma characteristics. [Pg.71]

Olson, L.K., Vela, N.P. and Caruso, J.A. (1995) Hydride generation, electrothermal vaporisation and liquid-chromatography as sample introduction techniques for inductively-coupled plasma-mass spectrometry. Spectrochim. Acta B, 50, 1095-1108. [Pg.86]


See other pages where Sample introduction technique is mentioned: [Pg.109]    [Pg.242]    [Pg.641]    [Pg.188]    [Pg.275]    [Pg.474]    [Pg.657]    [Pg.306]    [Pg.151]    [Pg.507]    [Pg.233]    [Pg.142]    [Pg.87]    [Pg.89]    [Pg.145]    [Pg.146]    [Pg.223]    [Pg.395]    [Pg.37]    [Pg.377]    [Pg.276]    [Pg.16]    [Pg.120]    [Pg.78]   


SEARCH



Introduction techniques

Sample introduction

Sampling techniques

Sampling techniques samples

© 2024 chempedia.info