Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrrolizidines reactions

Pyrrolizidines. Reaction of sodium succinimide with Fueh s reagent (1) leads to the pyrrolizidinc 2 in high yield. The product is converted into the alkaloid isoretro-... [Pg.78]

Apart from tertiary amines, the reaction may be catalyzed by phosphines, e.g. tri- -butylphosphine or by diethylaluminium iodide." When a chiral catalyst, such as quinuclidin-3-ol 8 is used in enantiomerically enriched form, an asymmetric Baylis-Hillman reaction is possible. In the reaction of ethyl vinyl ketone with an aromatic aldehyde in the presence of one enantiomer of a chiral 3-(hydroxybenzyl)-pyrrolizidine as base, the coupling product has been obtained in enantiomeric excess of up to 70%, e.g. 11 from 9 - -10 ... [Pg.29]

With nonracemic chiral diazoacetates the insertion process occurs with evident match/mismatch characteristics. This has been demonstrated in reactions of optically pure 2-methylcyclohexyl diazoacetates (Eq. 9) [85] and in carbon-hydrogen insertion reactions of steroidal diazoacetates (Eq. 10) [86], as well as with the synthesis of pyrrolizidines 36 and 37 [84]. The mechanistic preference for formation of a /J-lactone in Eq. 10 over insertion into the 4-position is not clear,but there are other examples of /J-lactone formation [87]. In these and related examples, selectivities in match/mismatch examples are high, and future investigations are anticipated to show even greater applicability. [Pg.215]

A review article is an intensive survey of a rather narrow field for example, the titles of some recent reviews are Desulfonation Reactions Recent Developments , Pyrrolizidine and Indolizidine Syntheses Involving 1,3-Dipolar Cycloaddtion , and From Corrin Chemistry to Asymmetry Catalysis—A Personal Account. A good review article is of enormous value, because it is a thorough survey of all the work done in the field under discussion. Review articles are printed in review journals and in certain books. The most important review journals in organic chemistry (though most are not exclusively devoted to organic chemistry) are shown in Table A.3. Some of the journals listed in Table A.l, for example, the Bull Soc. Chim. Fr. and J. Organomet. Chem. also publish occasional review articles. [Pg.1619]

Note It is reported that the use of chlorobenzene as solvent is essential when the reagent is to be used to detect aromatic amines [1]. In the case of steroids, penicillins, diuretics and alkaloids the reaction should be accelerated and intensified by spraying afterwards with dimethylsulfoxide (DMSO) or dimethylformamide (DMF), indeed this step makes it possible to detect some substances when this would not otherwise be possible [5,9-11] this latter treatment can, like heating, cause color changes [5,9]. Penicillins and diuretics only exhibit weak reactions if not treated afterwards with DMF [10, 11]. Steroids alone also yield colored derivatives with DMSO [9]. Tlreatment afterwards with diluted sulfuric acid (c = 2 mol/L) also leads to an improvement in detection sensitivity in the case of a range of alkaloids. In the case of pyrrolizidine alkaloids it is possible to use o-chloranil as an alternative detection reagent however, in this case it is recommended that the plate be treated afterwards with a solution of 2 g 4-(dimethyl-amino)-benzaldehyde and 2 ml boron trifluoride etherate in 100 ml anhydrous ethanol because otherwise the colors initially produced with o-chloranil rapidly fade [12]. [Pg.103]

The utility of lOOC reactions in the synthesis of fused rings containing a bridgehead N atom such as pyrrolizidines, indolizidines, and quinolizidines which occur widely in a number of alkaloids has been demonstrated [64]. Substrates 242 a-d, that possess properly positioned aldoxime and alkene functions, were prepared from proline or pipecolinic acid 240 (Eq. 27). Esterification of 240 and introduction of unsaturation on N by AT-alkylation produced 241 which was followed by conversion of the carbethoxy function to an aldoxime 242. lOOC reaction of 242 led to stereoselective formation of various tricyclic systems 243. This versatile method thus allows attachment of various unsaturated side chains that can serve for generation of functionalized five- or six-membered (possibly even larger) rings. [Pg.35]

A dietary supplement may be safe when taken in the recommended doses but may become dangerous in higher doses. However, patients may develop side effects even when ingesting recommended doses. Adverse reactions may be due to allergic reactions, dietary supplements containing toxic substances, mis-identification of plant, mislabeling of plant, natural toxic substances such as pyrrolizidine alkaloids in comfrey, unnatural toxic substances such as heavy metals, or pesticides. [Pg.738]

As discussed previously, radical ring-opening reactions of three-membered systems via cyclopropylmethyl and oxiranylmethyl radicals represent a fruitful method in organic synthesis [111]. De Kimpe and coworkers have now shown that azirid-ines can also be used, featuring a radical one-step synthesis of pyrrolizidines 3-280... [Pg.265]

Diels-Alder reactions are one of the most fundamental and useful reactions in synthetic organic chemistry. Various dienes and dienophiles have been employed for this useful reaction.1 Nitroalkenes take part in a host of Diels-Alder reactions in various ways, as outlined in Scheme 8.1. Various substituted nitroalkenes and dienes have been employed for this reaction without any substantial improvement in the original discovery of Alder and coworkers.2 Nitrodienes can also serve as 4ti-components for reverse electron demand in Diels-Alder reactions. Because the nitro group is converted into various functional groups, as discussed in Chapters 6 and 7, the Diels-Alder reaction of nitroalkenes has been frequently used in synthesis of complex natural products. Recently, Denmark and coworkers have developed [4+2] cycloaddition using nitroalkenes as heterodienes it provides an excellent method for the preparation of heterocyclic compounds, including pyrrolizidine alkaloids. This is discussed in Section 8.3. [Pg.231]

Dipolar addition to nitroalkenes provides a useful strategy for synthesis of various heterocycles. The [3+2] reaction of azomethine ylides and alkenes is one of the most useful methods for the preparation of pyrolines. Stereocontrolled synthesis of highly substituted proline esters via [3+2] cycloaddition between IV-methylated azomethine ylides and nitroalkenes has been reported.147 The stereochemistry of 1,3-dipolar cycloaddition of azomethine ylides derived from aromatic aldehydes and L-proline alkyl esters with various nitroalkenes has been reported. Cyclic and acyclic nitroalkenes add to the anti form of the ylide in a highly regioselective manner to give pyrrolizidine derivatives.148... [Pg.274]

The synthesis of pyrrolizidine alkaloid (-)-rosmarinecine illustrates the power of the fused mode tandem cycloaddition, as shown in Scheme 8.40.180 The all-cA relationship at the three contiguous centers C(l), C(7), and C(7a) can be constructed in a single-pot reaction with correct stereochemistry but C(6) cannot. [Pg.288]

Nitroalkenes are shown to be effective Michael acceptor B units in three sequential reactions (A + B + C coupling) in one reaction vessel. The sequence is initiated by enolate nucleophiles (A) and is terminated by aldehydes or acrylate electrophiles (C). The utility of this protocol is for rapid assembly of complex structures from simple and readily available components. A short total synthesis of a pyrrolizidine alkaloid is presented in Scheme 10.16.114... [Pg.349]

The Michael reaction of nitromethane with methyl vinyl ketone and l-decene-3-one followed by reductive cyclization gives two isomeric pyrrolizidines, depending on reduction conditions (Eq. 10.74).117... [Pg.350]

An intramolecular palladium-catalyzed tandem cyclization of dienamides 67 in which the amide nucleophile adds twice has been developed (equation 29)60. This reaction constitutes a formal [4+1] cycloaddition and provides a new route to pyrrolizidine and indolizidine alkaloids. Reaction of dienamides 67 in the presence of catalytic amounts of Pd(OAc)2 and CUCI2/O2 as the oxidant afforded bicyclic compounds 68 in good yields. The pyrrolizidine derivative 68 (R = Me, n = 1) was transformed to the alkaloid ( )-heliotridane. [Pg.677]

An interesting approach to the pyrrolizidine skeleton was devised wherein pyrrole-2-carboxaldehyde (70) underwent A-allylation under basic conditions and subsequent olefmation with ethyl p-tolylsulfinylmethanephosphonate to produce the pyrrolyl alkene 71 <00TL1983>. Intramolecular Heck reaction of the iodo species then produced the 1 -p-tolylsulfinyl-1,3-diene 72. [Pg.116]

Highly selective 1,3-dipolar cycloaddition reactions of nitrone (154) with acrylates have been used in the total syntheses of pyrrolizidine alkaloids, 7-deoxy-casuarine (572) and hyacinthacine A2 (573) (Scheme 2.263) (772). [Pg.338]

Cycloaddition reaction of nitrone (—)-(394) with dimethyl maleate D14 has been used for the synthesis of two new polyhydroxyl pyrrolizidines (687) and (688) (Schemes 2.293, 2.294). These compounds are analogs of alkaloids ros-marinecine and crotanecine, which were assayed for their inhibitory activities toward 22 commercially available glycosidase enzymes. One of them ((-)- a-epi-crotanecine) (—)-(688) is a potent and selective inhibitor of a-mannosidases (310). The reaction of (—)-(394) with dimethyl maleate gave a 9.6 6 1 mixture of cycloadducts (—)-(680), (+ )-(680), and (—)-(681), which arise from anti-exo,... [Pg.364]

Indicine IV-oxide (169) (Scheme 36) is a clinically important pyrrolizidine alkaloid being used in the treatment of neoplasms. The compound is an attractive drug candidate because it does not have the acute toxicity observed in other pyrrolizidine alkaloids. Indicine IV-oxide apparently demonstrates increased biological activity and toxicity after reduction to the tertiary amine. Duffel and Gillespie (90) demonstrated that horseradish peroxidase catalyzes the reduction of indicine IV-oxide to indicine in an anaerobic reaction requiring a reduced pyridine nucleotide (either NADH or NADPH) and a flavin coenzyme (FMN or FAD). Rat liver microsomes and the 100,000 x g supernatant fraction also catalyze the reduction of the IV-oxide, and cofactor requirements and inhibition characteristics with these enzyme systems are similar to those exhibited by horseradish peroxidase. Sodium azide inhibited the TV-oxide reduction reaction, while aminotriazole did not. With rat liver microsomes, IV-octylamine decreased... [Pg.397]

An intermediate 5-hydroxy-5,6-dihydro-2/7-pyrrolo[l,2- ][l,2]oxazin-7(4a//)-one 142 has been described in the total synthesis of (—)-loline, a pyrrolizidine alkaloid extracted from rye grass Lolium cuneatum. The key step of the synthesis was an intramolecular cycloaddition of acylnitrosodienes (obtained by in situ oxidation of the corresponding hydroxamic acids 143). This reaction generated predominantly the rro/o-stereoisomer that was further cleaved at the N-O bond with Na(Hg) and further elaborated in several steps to reach the target compound (Scheme 19) <2001J(P 1)1831 >. [Pg.515]

This methodology has been applied to the diastereoselective synthesis of the pyrrolizidine alkaloid 196 from 194 via 195 (Scheme 15.62) [123], Furthermore, the diastereoselectivity of these reactions for different dipolarophiles has been investigated in detail [124] and could be extended to a ring closure to seven-membered nitrogen heterocycles [125,126]. [Pg.907]

A wide application of Newcomb s method provides a variety of N-heterocyc-lic systems, such as perhydroindoles, pyrrolizidines and aza-brigded bicycles [59, W, 146], The mild reaction conditions are compatible with several funtional groups of the substrate and several trapping agents to functionalize the cyclized product. 2-Substituted pyrrolizidines 132 are accessible by tandem cyclization of iV-allyl-substituted PTOC carbamate 131. In this case the allyl group on the nitrogen serves as an internal trap for the intermediate carbon radical. The Af-methylcyclohept-4-enaminium radical cation, produced from the corres-... [Pg.96]

A chiral pyrrolizidine (53) catalyses asymmetric Baylis-Hillman reactions. Important structural features include an accessible nitrogen lone pair and a strategically placed hydroxy group the latter may also interact with alkali metal cations, which catalyse the reaction. [Pg.14]

Chiral rra s-2,5-dialkylpyrrolidines, which were used for the synthesis of ant-venom pyrrolizidines, were prepared in the following manner, d-Alanine was transformed into an pentenylamine which, upon intramolecular amidomercuration, yielded 15 (90TA561 92JOC4401). From a protected AA amide, after a Grignard reaction and treatment of the aminoketone with ethyl acetoacetate, the tetrasubstituted pyrrole 16 was obtained [93H(35)843],... [Pg.14]

We have extended our work on a new synthesis of the antiprotozoal antibiotic anisomycin to the necine bases of the pyrrolizidine alkaloids, in particular retronecine and crotanecine. The key intermediate, (2R,3S,4R)-2-(alkoxy-carbonylmethyl)-3,4—isopropylidenedioxypyrrolidine, has been prepared by three distinct routes from D-ribose and g-erythrose, using reactions of high stereoselectivity. [Pg.107]

The availabihty of enantioenriched 2-tribntylstannylpyrrolidines ° can be used to advantage in these reactions. Conversion to a snbstrate snitable for cyclization allows, after transmetalation, the determination of the stereoselectivity on intramolecnlar carbolithia-tion. Treatment of the enantioenriched stannane shown in Scheme 23 with bntyllithinm resnlted in the formation of the pyrrolizidine alkaloid psendoheliotridane. The prodnct was formed as a single diastereomer and with no loss of optical pnrity, occnrring with overall retention of confignration at the carbanion center. Related cychzation reactions... [Pg.1017]

Ornithine is a metabolically quite active amino acid, and the important precursor of pyrrolidine nucleus, which is found in pyrrolizidine alkaloids. Ornithine itself is a non-protein amino acid formed mainly from L-glumate in plants, and synthesized from the urea cycle in animals as a result of the reaction catalyzed by enzymes in arginine. [Pg.73]


See other pages where Pyrrolizidines reactions is mentioned: [Pg.610]    [Pg.822]    [Pg.484]    [Pg.671]    [Pg.138]    [Pg.221]    [Pg.186]    [Pg.56]    [Pg.396]    [Pg.397]    [Pg.40]    [Pg.1068]    [Pg.73]    [Pg.98]    [Pg.61]    [Pg.76]    [Pg.102]    [Pg.207]    [Pg.259]    [Pg.262]    [Pg.342]   
See also in sourсe #XX -- [ Pg.353 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Pyrrolizidin

Pyrrolizidine

Pyrrolizidine alkaloids Eschenmoser coupling reaction

Pyrrolizidines bond reactions

Pyrrolizidines substituted, reactions

Pyrrolizidines unsaturated, reactions

Pyrrolizidines, amino-, reactions

Pyrrolizidines, hydroxy-, reactions

Reactions of Pyrrolizidine and Its Derivatives

Reactions of pyrrolizidines

© 2024 chempedia.info