Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic amines detection

Generally, the detector response will depend on the type of aromatic amine detected. Table I shows that response to N,N-di-methylaniline is about twice as high as the response to its primary isomer 2,6-dimethylaniline. Sensitivity for a selected number of aromatic amines was found to be increased by a factor 5-16 in comparison to a flame-ionization detector. [Pg.377]

Fig. 14.4. Electropherograms of five aromatic amines detected at with boron-doped diamond (a), screen-printed carbon (b) and glassy carbon (c) electrodes. Sample mixture 4-aminophenol (l), 1,2-... Fig. 14.4. Electropherograms of five aromatic amines detected at with boron-doped diamond (a), screen-printed carbon (b) and glassy carbon (c) electrodes. Sample mixture 4-aminophenol (l), 1,2-...
Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

DETECTION OF AROMATIC AMINES BY SURFACE-ASSISTED LASER DESORPTION-IONIZATION... [Pg.103]

An application of surface-assisted laser desorption-ionization (SALDI) method for practical, ultrahigh sensitivity detection of aromatic amines by GC-MS is reported. The prototype analytical device for trace detection of different organic compounds is created. [Pg.103]

Note Note that the diazotization of primary aromatic amines can also be achieved by placing the chromatogram for 3 — 5 min in a twin-trough chamber containing nitrous fumes (fume cupboard ). The fumes are produced in the empty trough of the chamber by addition of 25% hydrochloric acid to a 20% sodium nitrite solution [2, 4], iV-(l-Naphthyl)ethylenediamine can be replaced in the reagent by a- or -naphthol [10, 14], but this reduces the sensitivity of detection [2]. Spray solutions Ila and lib can also be used as dipping solutions. [Pg.225]

In the case of carbohydrates blue chromatogram zones are produced on a yellow background that slowly fades [2]. Steroids, vitamins, antioxidants, phenols and aromatic amines yield, sometimes even at room temperature, variously colored chromatogram zones [5]. -Blockers and laxatives also acquire various colors [7, 10]. The detection hmits are in the nanogram to microgram range [5]. [Pg.428]

The end group of the polymers, photoinitiated with aromatic amine with or without the presence of carbonyl compound BP, has been detected with absorption spectrophotometry and fluororescence spectrophotometry [90]. The spectra showed the presence of tertiary amino end group in the polymers initiated with secondary amine such as NMA and the presence of secondary amino end group in the polymers initiated with primary amine such as aniline. These results show that the amino radicals, formed through the deprotonation of the aminium radical in the active state of the exciplex from the primary or secondary aromatic amine molecule, are responsible for the initiation of the polymerization. [Pg.239]

In the context of the stability of the nitrosoamine intermediate in the diazotization of heteroaromatic amines relative to that in the case of aromatic amines, the reversibility of diazotization has to be considered. To the best of our knowledge the reverse reaction of a diazotization of an aromatic amine has never been observed in acidic solutions. This fact is the basis of the well-known method for the quantitative analysis of aromatic amines by titration with a calibrated solution of sodium nitrite (see Sec. 3.3). With heteroaromatic amines, however, it has been reported several times that, when using amine and sodium nitrite in the stoichiometric ratio 1 1, after completion of the reaction nitrous acid can still be detected with Kl-starch paper,... [Pg.62]

In azo couplings with carbonyl compounds, three tautomeric products are possible, compared with only two for phenols and aromatic amines (discussed in Section 12.1). The ketohydrazone 12.75 is most often dominant, but for easily enolizable 1,3-dicarbonyl compounds (X=CO-R and similar structures) the azoenol 12.76 is the major product. The azoketone 12.77 is often postulated as primary product, but has rarely been identified in an unambiguous fashion using modern methods. The CH2 group should be easily detectable in the lH NMR spectrum. [Pg.334]

Coupling reactions with diazonium salts to yield intensely colored azo derivatives have often been used for the detection of phenols, primary aromatic amines and electron-rich heterocyclics. [Pg.55]

Note It is reported that the use of chlorobenzene as solvent is essential when the reagent is to be used to detect aromatic amines [1]. In the case of steroids, penicillins, diuretics and alkaloids the reaction should be accelerated and intensified by spraying afterwards with dimethylsulfoxide (DMSO) or dimethylformamide (DMF), indeed this step makes it possible to detect some substances when this would not otherwise be possible [5,9-11] this latter treatment can, like heating, cause color changes [5,9]. Penicillins and diuretics only exhibit weak reactions if not treated afterwards with DMF [10, 11]. Steroids alone also yield colored derivatives with DMSO [9]. Tlreatment afterwards with diluted sulfuric acid (c = 2 mol/L) also leads to an improvement in detection sensitivity in the case of a range of alkaloids. In the case of pyrrolizidine alkaloids it is possible to use o-chloranil as an alternative detection reagent however, in this case it is recommended that the plate be treated afterwards with a solution of 2 g 4-(dimethyl-amino)-benzaldehyde and 2 ml boron trifluoride etherate in 100 ml anhydrous ethanol because otherwise the colors initially produced with o-chloranil rapidly fade [12]. [Pg.103]

The dipping reagent can be used, for example, on silica gel, kieselguhr. Si 50000, RP 18, NH2, Diol and CN layers. It is not possible to detect aromatic amines on cellulose layers [1]. [Pg.103]

The detection limits per chromatogram zone are 1-3 pg substance for ergot alkaloids [9], 5 pg for diuretics [11] and 5-30 ng for aromatic amines [5]. [Pg.169]

The visual detection limits for aromatic amines and phenols are 100-600 ng substance per chromatogram zone [1 -3]. [Pg.198]

Note The aromatic amines produced by reduction with SnCl2 in acidic medium can be detected with fluorescamine (after neutralization of the layer by spraying with sodium carbonate) instead of 4-(dimethylamino)-benzaldehyde [5]. [Pg.221]

Mass spectrometry is a useful tool to detect the existence of reactive iron-imido intermediates. In intramolecular aromatic aminations, Que and coworkers used electrospray ionization mass spectrometry to show the presence of a molecular ion at m/z 590.3 and 621.2, which could be attributed to the formation of [(6-(o-TsN-C6H4)-TPA)Fe ]+ and [(6-(o-TsN-C6H4)-TPA)Fe° OMe)]+. With the isoto-... [Pg.122]

Aromatic amines formed from the reduction of azo colorants in toy products were analysed by means of HPLC-PDA [703], Drews et al. [704] have applied HPLC/ELSD and UV/VIS detection for quantifying SFE and ASE extracts of butyl stearate finish on various commercial yarns. From the calibrated ELSD response the total extract (finish and polyester trimer) is obtained and from the UV/VIS response the trimer only. Representative SFE-ELSD/UV finish analysis data compare satisfactorily to their corresponding SFE gravimetric weight recovery results. GC, HPLC and SEC are also used for characterisation of low-MW compounds (e.g. curing agents, plasticisers, by-products of curing reactions) in epoxy resin adhesives. [Pg.251]

Fluorescence is much more widely used for analysis than phosphorescence. Yet, the use of fluorescent detectors is limited to the restricted set of additives with fluorescent properties. Fluorescence detection is highly recommended for food analysis (e.g. vitamins), bioscience applications, and environmental analysis. As to poly-mer/additive analysis fluorescence and phosphorescence analysis of UV absorbers, optical brighteners, phenolic and aromatic amine antioxidants are most recurrent [25] with an extensive listing for 29 UVAs and AOs in an organic solvent medium at r.t. and 77 K by Kirkbright et al. [149]. [Pg.322]

Voltammetry has been adapted to HPLC (when the mobile phase is conducting), and CE as a detection technique for electroactive compounds. In this usage, the voltammetric cell has been miniaturised (to about 1 p.L) in order not to dilute the analytes after separation. This method of amperometric detection in the pulsed mode is very sensitive. However, this device makes it possible to detect few analytically important molecules besides phenols, aromatic amines and thiols. [Pg.670]

The extent to which 151 phosphorylates the aromatic amine in the phenyl ring is highly dependent upon the solvent. For instance, aromatic substitution of N-methylaniline is largely suppressed in the presence of dioxane or acetonitrile while pho.sphoramidate formation shows a pronounced concomitant increase. The presence of a fourfold excess (v/v) or pyridine, acetonitrile, dioxane, or 1,2-di-methoxyethane likewise suppresses aromatic substitution of N,N-diethylaniline below the detection limit. It appears reasonable to assume that 151 forms complexes of type 173 and 174 with these solvents — resembling the stable dioxane-S03 adduct 175 — which in turn represent phosphorylating reagents. They are, however, weaker than monomeric metaphosphate 151 and can only react with strong nucleophiles. [Pg.113]

We are looking for compounds that are easy to oxidise, so the hydrocarbons would not be suitable. Nitrobenzene is easily reducible, so ec detection would probably not be useful in practice. Phenols and aromatic amines are easily oxidised, so the last two would be suitable. [Pg.67]


See other pages where Aromatic amines detection is mentioned: [Pg.1030]    [Pg.361]    [Pg.805]    [Pg.805]    [Pg.1030]    [Pg.361]    [Pg.805]    [Pg.805]    [Pg.139]    [Pg.273]    [Pg.103]    [Pg.227]    [Pg.104]    [Pg.103]    [Pg.904]    [Pg.98]    [Pg.243]    [Pg.17]    [Pg.29]    [Pg.317]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Amines detection

Aromatic amination

Aromatic amines

Aromatics amination

Aromatization detection

© 2024 chempedia.info