Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein catalytic activity

Whatever the market, wherever the application, the development of the Sensor Device requires separate and linked investigation at various levels. Even without a particular final goal, our basic understanding of immunoassay, enzyme-linked assay, recognition proteins, catalytic active sites and their electronic transduction will continue to occupy the field, in addition to more downstream considerations such as life-time levels of detection etc. the list could be unending, these for example, are just some of the considerations ... [Pg.19]

Enzymes are important catalysts in biological organisms and are of increasing use in detergents and sensors. It is of interest to understand not only their adsorption characteristics but also their catalytic activity on the surface. The interplay between adsorption and deactivation has been clearly illustrated [119] as has the ability of a protein to cleave a surface-bound substrate [120]. [Pg.404]

Most reactions in cells are carried out by enzymes [1], In many instances the rates of enzyme-catalysed reactions are enhanced by a factor of a million. A significantly large fraction of all known enzymes are proteins which are made from twenty naturally occurring amino acids. The amino acids are linked by peptide bonds to fonn polypeptide chains. The primary sequence of a protein specifies the linear order in which the amino acids are linked. To carry out the catalytic activity the linear sequence has to fold to a well defined tliree-dimensional (3D) stmcture. In cells only a relatively small fraction of proteins require assistance from chaperones (helper proteins) [2]. Even in the complicated cellular environment most proteins fold spontaneously upon synthesis. The detennination of the 3D folded stmcture from the one-dimensional primary sequence is the most popular protein folding problem. [Pg.2642]

Biological catalysts — enzymes — are usually proteins. The development of new protein syntheses is nowadays dominated by genetic protein engineering (see section 4.1.2.6). Bio-organic approaches towards novel catalytically active structures and replicating systems try to manage without biopolymers. [Pg.346]

The shape of a large protein is influenced by many factors including of course Its primary and secondary structure The disulfide bond shown m Figure 27 18 links Cys 138 of carboxypeptidase A to Cys 161 and contributes to the tertiary structure Car boxypeptidase A contains a Zn " ion which is essential to the catalytic activity of the enzyme and its presence influences the tertiary structure The Zn ion lies near the cen ter of the enzyme where it is coordinated to the imidazole nitrogens of two histidine residues (His 69 His 196) and to the carboxylate side chain of Glu 72... [Pg.1146]

Many globular proteins are enzymes They accelerate the rates of chemical reactions m biological systems but the kinds of reactions that take place are the fundamental reactions of organic chemistry One way m which enzymes accelerate these reactions is by bringing reactive func tions together m the presence of catalytically active functions of the protein... [Pg.1152]

Section 27 21 Often the catalytically active functions of an enzyme are nothing more than proton donors and proton acceptors In many cases a protein acts m cooperation with a coenzyme, a small molecule having the proper func tionahty to carry out a chemical change not otherwise available to the protein itself... [Pg.1152]

Specificity for a particular charged substrate can be engineered into an enzyme by replacement of residues within the enzyme-active site to achieve electrostatic complementarity between the enzyme and substrate (75). Protein engineering, when coupled with detailed stmctural information, is a powerful technique that can be used to alter the catalytic activity of an enzyme in a predictable fashion. [Pg.204]

Enzymes are excellent catalysts for two reasons great specificity and high turnover rates. With but few exceptions, all reac tions in biological systems are catalyzed by enzymes, and each enzyme usually catalyzes only one reaction. For most of the important enzymes and other proteins, the amino-acid sequences and three-dimensional structures have been determined. When the molecular struc ture of an enzyme is known, a precise molecular weight could be used to state concentration in molar units. However, the amount is usually expressed in terms of catalytic activity because some of the enzyme may be denatured or otherwise inactive. An international unit (lU) of an enzyme is defined as the amount capable of producing one micromole of its reaction product in one minute under its optimal (or some defined) reaction conditions. Specific activity, the activity per unit mass, is an index of enzyme purity. [Pg.2149]

Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)... Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)...
The results of experiments in which the mutation was made were, however, a complete surprise. The Asp 189-Lys mutant was totally inactive with both Asp and Glu substrates. It was, as expected, also inactive toward Lys and Arg substrates. The mutant was, however, catalytically active with Phe and Tyr substrates, with the same low turnover number as wild-type trypsin. On the other hand, it showed a more than 5000-fold increase in kcat/f m with Leu substrates over wild type. The three-dimensional structure of this interesting mutant has not yet been determined, but the structure of a related mutant Asp 189-His shows the histidine side chain in an unexpected position, buried inside the protein. [Pg.215]

Figure 13.32 Regulation of the catalytic activity of members of the Src family of tyrosine kinases, (a) The inactive form based on structure determinations. Helix aC is in a position and orientation where the catalytically important Glu residue is facing away from the active site. The activation segment has a conformation that through steric contacts blocks the catalytically competent positioning of helix aC. (b) A hypothetical active conformation based on comparisons with the active forms of other similar protein kinases. The linker region is released from SH3, and the activation segment changes its structure to allow helix aC to move and bring the Glu residue into the active site in contact with an important Lys residue. Figure 13.32 Regulation of the catalytic activity of members of the Src family of tyrosine kinases, (a) The inactive form based on structure determinations. Helix aC is in a position and orientation where the catalytically important Glu residue is facing away from the active site. The activation segment has a conformation that through steric contacts blocks the catalytically competent positioning of helix aC. (b) A hypothetical active conformation based on comparisons with the active forms of other similar protein kinases. The linker region is released from SH3, and the activation segment changes its structure to allow helix aC to move and bring the Glu residue into the active site in contact with an important Lys residue.
Each precursor protein molecule is cleaved only once to generate one molecule of the coat protein, and catalytic activity is restricted to the precursor protein. Why is the coat protein itself catalytically inactive The structure of the coat protein shows that its C-terminus is bound in the active site cleft and thereby prevents other proteins entering the cleft and being cleaved. Tbis arrangement allows the precursor protein to fulfill its function to generate the coat protein and prevents the coat protein from destroying other proteins in the infected cell, including other coat proteins. [Pg.341]

FIGURE 15.2 Enzymes regulated by covalent modification are called interconvertible enzymes. The enzymes protein kinase and protein phosphatase, in the example shown here) catalyzing the conversion of the interconvertible enzyme between its two forms are called converter enzymes. In this example, the free enzyme form is catalytically active, whereas the phosphoryl-enzyme form represents an inactive state. The —OH on the interconvertible enzyme represents an —OH group on a specific amino acid side chain in the protein (for example, a particular Ser residue) capable of accepting the phosphoryl group. [Pg.463]

The serine residue of isocitrate dehydrogenase that is phos-phorylated by protein kinase lies within the active site of the enzyme. This situation contrasts with most other examples of covalent modification by protein phosphorylation, where the phosphorylation occurs at a site remote from the active site. What direct effect do you think such active-site phosphorylation might have on the catalytic activity of isocitrate dehydrogenase (See Barford, D., 1991. Molecular mechanisms for the control of enzymic activity by protein phosphorylation. Bioehimiea et Biophysiea Acta 1133 55-62.)... [Pg.672]

Denaturation is accompanied by changes in both physical and biological properties. Solubility is drastically decreased, as occurs when egg white is cooked and the albumins unfold and coagulate. Most enzymes also lose all catalytic activity when denatured, since a precisely defined tertiary structure is required for their action. Although most denaturation is irreversible, some cases are known where spontaneous renaturation of an unfolded protein to its stable tertiary structure occurs. Renaturation is accompanied by a full recovery of biological activity. [Pg.1040]

The metabolic control is exercised on certain key regulatory enzymes of a pathway called allosteric enzymes. These are enzymes whose catalytic activity is modulated through non-covalent binding of a specific metabolite at a site on the protein other than the catalytic site. Such enzymes may be allosterically inhibited by ATP or allosterically activated by ATP (some by ADP and/or AMP). [Pg.122]

As described above, Steinhardt and Fugitt81 found that the catalytic activity of polystyrenesulfonic acid 37 (HPSt) was higher than that of mineral acid for the add hydrolyses of proteins. Lawrence and Moore82 investigated the hydrolysis rates of glycylpeptides more quantitatively by using cationic... [Pg.155]

So far ten catalytically active caspases have been reported in mouse (caspase-1, -2, -3, -6, -7, -8, -9, -11, -12,-14) and eleven in human (caspase-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -14) (Fig. 1). Caspases are expressed as inactive proenzymes that contain an amino-terminal prodomain of variable length followed by two domains with conserved sequences a large subunit ( 20 kDa, p20) and a small carboxy-terminal subunit ( 10 kDa, plO). Caspases can be divided according to absence (-3, -6, -7, -14) or presence (-1, -2, -8, -9, -10, -11, -12) of an extended prodomain containing protein-protein interaction motifs belonging to the death domain (DD) superfamily, in particular the death effector domains (DED) and the caspase activation and recruitment domains (CARD). [Pg.329]


See other pages where Protein catalytic activity is mentioned: [Pg.180]    [Pg.77]    [Pg.77]    [Pg.354]    [Pg.85]    [Pg.225]    [Pg.216]    [Pg.180]    [Pg.77]    [Pg.77]    [Pg.354]    [Pg.85]    [Pg.225]    [Pg.216]    [Pg.2502]    [Pg.66]    [Pg.205]    [Pg.87]    [Pg.404]    [Pg.290]    [Pg.53]    [Pg.91]    [Pg.109]    [Pg.255]    [Pg.279]    [Pg.495]    [Pg.147]    [Pg.206]    [Pg.431]    [Pg.464]    [Pg.10]    [Pg.2]    [Pg.3]    [Pg.29]    [Pg.71]    [Pg.358]   
See also in sourсe #XX -- [ Pg.198 ]




SEARCH



Catalytic proteins

Protein kinase constitutively active catalytic domain

Protein stability catalytic activity

© 2024 chempedia.info