Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties conductivity measurement

Before we are in a position to discuss the viscosity of polymer melts, we must first give a quantitative definition of what is meant by viscosity and then say something about how this property is measured. This will not be our only exposure to experimental viscosity in this volume—other methods for determining bulk viscosity will be taken up in the next chapter and the viscosity of solutions will be discussed in Chap. 9—so the discussion of viscometry will only be introductory. Throughout we shall be concerned with constant temperature experiments conducted under nonturbulent flow conditions. [Pg.75]

Experimental data that are most easily obtained are of (C, t), (p, t), (/ t), or (C, T, t). Values of the rate are obtainable directly from measurements on a continuous stirred tank reactor (CSTR), or they may be obtained from (C, t) data by numerical means, usually by first curve fitting and then differentiating. When other properties are measured to follow the course of reaction—say, conductivity—those measurements are best converted to concentrations before kinetic analysis is started. [Pg.688]

A toller may need to use resources outside their company to measure physical properties, conduct safety or other testing, engineer changes to piping or other facilities and equipment. This need frequently occurs for products in the initial development or commercialization stage. The toller should maintain confidentiality agreements with their suppliers and subcontractors commensurate with the proprietary nature of their client companies processes. Provision to allow disclosure of information to third parties should be addressed in the contract between the toller and the client. It may be structured so that the client must approve the toller s release of information to third parties. [Pg.42]

The above measurements all rely on force and displacement data to evaluate adhesion and mechanical properties. As mentioned in the introduction, a very useful piece of information to have about a nanoscale contact would be its area (or radius). Since the scale of the contacts is below the optical limit, the techniques available are somewhat limited. Electrical resistance has been used in early contact studies on clean metal surfaces [62], but is limited to conducting interfaces. Recently, Enachescu et al. [63] used conductance measurements to examine adhesion in an ideally hard contact (diamond vs. tungsten carbide). In the limit of contact size below the electronic mean free path, but above that of quantized conductance, the contact area scales linearly with contact conductance. They used these measurements to demonstrate that friction was proportional to contact area, and the area vs. load data were best-fit to a DMT model. [Pg.201]

The fractal-like organization led, therefore, to conductivity measurements at three different scales (1) the macroscopic, mm-size core of nanotube containing material, (2) a large (60 nm) bundle of nanotubes and, (3) a single microbundle, 50 nm in diameter. These measurements, though they do not allow direct insights on the electronic properties of an individual tube give, nevertheless, at a different scale and within certain limits fairly useful information on these properties. [Pg.123]

Although it is required to refine the above condition I in actuality, this rather simple but impressive prediction seems to have much stimulated the experiments on the electrical-conductivity measurement and the related solid-state properties in spite of technological difficulties in purification of the CNT sample and in direct measurement of its electrical conductivity (see Chap. 10). For instance, for MWCNT, a direct conductivity measurement has proved the existence of metallic sample [7]. The electron spin resonance (ESR) (see Chap. 8) [8] and the C nuclear magnetic resonance (NMR) [9] measurements have also proved that MWCNT can show metallic property based on the Pauli susceptibility and Korringa-like relation, respectively. On the other hand, existence of semiconductive MWCNT sample has also been shown by the ESR measurement [ 10], For SWCNT, a combination of direct electrical conductivity and the ESR measurements has confirmed the metallic property of the sample employed therein [11]. More recently, bandgap values of several SWCNT... [Pg.42]

Several experimental techniques may be used, such as acid/base titration, electrical conductivity measurement, temperature measurement, or measurement of optical properties such as refractive index, light absorption, and so on. In each case, it is necessary to specify the manner of tracer addition, the position and number of recording stations, the sample volume of the detection system, and the criteria used in locating the end-point. Each of these factors will influence the measured value of mixing time, and therefore care must be exercised in comparing results from different investigations. [Pg.299]

Although the transport properties, conductivity, and viscosity can be obtained quantitatively from fluctuations in a system at equilibrium in the absence of any driving forces, it is most common to determine the values from experiments in which a flux is induced by an external stress. In the case of viscous flow, the shear viscosity r is the proportionality constant connecting the magnitude of shear stress S to the flux of matter relative to a stationary surface. If the flux is measured as a velocity gradient, then... [Pg.120]

It is obvious from Equation 14.14 that the most important parameter determining the volumetric air flow rate <2W is the intrinsic permeability K of soil. At this point it is important to stress the difference between water permeability (or hydraulic conductivity) k , air permeability ka, and intrinsic permeability K. In most cases, when permeability data are provided for a type of soil or geological formation, these data are based on hydraulic conductivity measurements and describe how easily the water can flow through this formation. However, the flow characteristic of a fluid depends greatly on its properties, e.g., density p and viscosity p. Equation 14.16 describes the relationship between permeability coefficient k and fluid properties p and p ... [Pg.530]

As with conductivity measurements, methods and results of theoretical treatments of CT in DNA have varied significantly. Mechanisms invoking hopping, tunneling, superexchange, or even band delocalization have been proposed to explain CT processes in DNA (please refer to other reviews in this text). Significantly, many calculations predicted that the distance dependence of CT in DNA should be comparable to that observed in the a-systems of proteins [26]. This prediction has not been realized experimentally. The dichotomy between theory and experiment may be related to the fact that many early studies gave insufficient consideration to the unique properties of the DNA molecule. Consequently, CT models derived for typical conductors, or even those based on other biomolecules such as proteins, were not adequate for DNA. [Pg.80]

The electrical conductance of a solution is a measure of its current-carrying capacity and is therefore determined by the total ionic strength. It is a nonspecific property and for this reason direct conductance measurements are of little use unless the solution contains only the electrolyte to be determined or the concentrations of other ionic species in the solution are known. Conductometric titrations, in which the species of interest are converted to non-ionic forms by neutralization, precipitation, etc. are of more value. The equivalence point may be located graphically by plotting the change in conductance as a function of the volume of titrant added. [Pg.265]

Several kinds of detection systems have been applied to CE [1,2,43]. Based on their specificity, they can be divided into bulk property and specific property detectors [43]. Bulk-property detectors measure the difference in a physical property of a solute relative to the background. Examples of such detectors are conductivity, refractive index, indirect methods, etc. The specific-property detectors measure a physico-chemical property, which is inherent to the solutes, e.g. UV absorption, fluorescence emission, mass spectrum, electrochemical, etc. These detectors usually minimize background signals, have wider linear ranges and are more sensitive. In Table 17.3, a general overview is given of the detection methods that are employed in CE with their detection limits (absolute and relative). [Pg.603]

A considerable volume of literature has accumulated on conductance measurements in mixtures of solvents. Ion mobilities and association constants have been measured over a range of bulk dielectric constants with the aim of correlating bulk solvent properties with mobilities, ion association, and ion size parameters. An example of a widely used solvent mixture is water and 1,4-dioxane, which are miscible over all concentrations, providing a dielectric constant range of 2 to 78. The data obtained in systems containing two or more solvents must be treated with circumspection, as one solvent may interact more strongly with a given species present in solution than the other, and the re-... [Pg.56]

Association and mobilities are related in a complex way to the bulk properties of the solvent and solute. These properties include the charge density and distribution on the ions and the Lewis base properties, the strength and nature of the solvent molecule dipole, the hydrogen-bonding capability, and the intermolecular structure of the solvent. Some correlations can be made on the basis of mobility and association trends in series such as the halides and alkali metals within a single solvent others can be drawn between solvents for a given ion. It appears that conductance measurements provide a clear measure of the sum of ion-solvent interactions, but that other techniques must be used in conjunction with conductance if assessments of individual contributions from specific factors are to be made. [Pg.57]

For an excellent introductory reading on ac impedance techniques for the purpose of ion conductivity measurement or study of interfacial properties, please see Linford, R. G. In Electrochemical Science and Technology of Polymers, 2nd ed. Linford, R. G., Ed. Elsevier Applied Science London, 1990 p 281. [Pg.173]

Tortuosity is a long-range property of a porous medium, which qualitatively describes the average pore conductivity of the solid. It is usual to define x by electrical conductivity measurements. With knowledge of the specific resistance of the electrolyte and from a measurement of the sample membrane resistance, thickness, area, and porosity, the membrane tortuosity can be calculated from eq 3. [Pg.192]

To examine the possibility that the changes in membrane properties were caused by permanent chemical changes in the Na- SPS, a portion of the annealed sample was redissolved in DMF, recast as a film and its conductance measured. As Table IV indicates, the recast film returned to its original conductance, which clearly proves that the annealing process only effected the physical properties of the Na-SPS ionomer film. This point is reinforced by our discovery that an annealed sample which was stored in water over a period of a week slowly changed back to its original conductance value. [Pg.363]

A widespread method for determining the induction period for autoxidation of oils and fats consists of passing a continuous stream of air through the heated sample and collecting the volatile acids evolved in a water trap, where they are determined on a real time basis. The time plot usually presents a flat appearance for a certain period and then takes off in an accelerated manner. This test is the basis of several national and international standards (e.g. AOCS Cd 12b-92—oil stability index" ISO 6886—accelerated oxidation test for oxidative stability of fats and oils ) and the design of the Rancimat equipment, where the end determination is based on conductivity measurements . In addition to oxidation stability as determined by the Rancimat method and POV, which negatively affects virgin olive oil stability, other nonstandard properties were proposed for better assessment of the quality of this oil, namely LC determination of Vitamin E (21), colorimetric determination of total polar phenols and UVD of total chlorophyll. ... [Pg.664]

Studies include wet-cell photoelectrochemical measurements (42,60,72,90), STM measurements on single MS particles in thin films (55,56,81), and conductivity measurements of metal chalcogenides in LB films (20,21,23). Many such studies are driven by the search for cheaper methods and materials for the fabrication of semiconductors suitable for photoelectrochemical devices. Moreover, the ability to tune optical properties via the Q-state effect and the versatility of LB fabrication make the LB films an attractive medium for semiconductor production. The photo-... [Pg.271]


See other pages where Properties conductivity measurement is mentioned: [Pg.911]    [Pg.911]    [Pg.136]    [Pg.240]    [Pg.45]    [Pg.409]    [Pg.192]    [Pg.156]    [Pg.352]    [Pg.520]    [Pg.466]    [Pg.472]    [Pg.493]    [Pg.113]    [Pg.618]    [Pg.1080]    [Pg.56]    [Pg.827]    [Pg.228]    [Pg.262]    [Pg.556]    [Pg.18]    [Pg.432]    [Pg.332]    [Pg.430]    [Pg.45]    [Pg.89]    [Pg.685]    [Pg.141]    [Pg.273]    [Pg.251]    [Pg.50]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Conductance measurements

Conductance measurment

Conducting properties

Conduction measurements

Conductivity measurements

Properties conductivity

Properties measured

© 2024 chempedia.info