Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample in membrane

There are two ways to design a membrane module [66], The membrane can be introduced into the sample, referred to as membrane in sample (MIS), or the sample can be introduced into the membrane, referred to as sample in membrane (SIM). Figure 4.17a is a schematic diagram of the MIS configu-... [Pg.215]

Figure 4.17. Configurations of membrane modules using hollow-fiber membranes, (a) Membrane in sample (MIS). (b) Sample in membrane (SIM). Figure 4.17. Configurations of membrane modules using hollow-fiber membranes, (a) Membrane in sample (MIS). (b) Sample in membrane (SIM).
There are also techniques involving the use of nonporous, solid or liquid membranes that separate the donor phase from the receiving phase by an evident phase boundary. Most often used are three-phase systems (donor phase, membrane, and acceptor phase) or two-phase systems, in which one of the surrounding phases is the same as the membrane. Solid membranes are made of chemically resistant, hydrophobic polymers (PTFE, PVDF, PS, PP, silicates), metals (Pd alloys), or ceramic materials. Channels of membrane modules have a volume ranging from 10 to 1000 pL and, according to their geometry, can be classified as planar or fibrous. For setting up a membrane system, two modes can be used the membrane can be immersed in a sample (membrane in sample, MIS) or the sample can be introduced into a membrane (sample in membrane, SIM). In both systems, only a small amount of sample is in direct contact with membrane, because ratio of the membrane surface area to the sample volume is small. [Pg.131]

Illustration of a dialysis membrane in action. In (a) the sample solution is placed in the dialysis tube and submerged in the solvent, (b) Smaller particles pass through the membrane, but larger particles remain within the dialysis tube. [Pg.206]

Other difficulties of measuring pH in nonaqueous solvents are the complications that result from dehydration of the glass pH membrane, increased sample resistance, and large Hquid-junction potentials. These effects are complex and highly dependent on the type of solvent or mixture used (1,5). [Pg.467]

The membrane is critically important in osomometry. Selection of a membrane involves reconciliation of high permeability toward the solvent with virtual impermeability to the smallest polymer molecules present in the sample. Membranes of cellulose are most widely used. Commercially Regenerated cellulose film is a common source. The undried gel cellophane film is often preferred, but the dry film may be swollen in water (or in aqueous solutions of caustic or zinc chloride ) to satisfactory porosity. Useful cellulose membranes may also be prepared by denitration of nitrocellulose films/ and special advantages have been claimed for bacterial cellulose films. The water in the swollen membrane in any case may be replaced by a succession of miscible organic solvents ending with the one in which osmotic measurements are to be made. Membranes of varying porosity may be... [Pg.278]

A representative ISE is shown schematically in Fig. 1. The electrode consists of a membrane, an internal reference electrolyte of fixed activity, (ai)i , ai and an internal reference electrode. The ISE is immersed in sample solution that contains analyte of some activity, (ajXampie and into which an external reference electrode is also immersed. The potential measured by the pH/mV meter (Eoe,) is equal to the difference in potential between the internal (Eraf.int) and external (Eref.ext) reference electrodes, plus the membrane potential (E emb), plus the liquid junction potential... [Pg.4]

An ion-selective electrode contains a semipermeable membrane in contact with a reference solution on one side and a sample solution on the other side. The membrane will be permeable to either cations or anions and the transport of counter ions will be restricted by the membrane, and thus a separation of charge occurs at the interface. This is the Donnan potential (Fig. 5 a) and contains the analytically useful information. A concentration gradient will promote diffusion of ions within the membrane. If the ionic mobilities vary greatly, a charge separation occurs (Fig. 5 b) giving rise to what is called a diffusion potential. [Pg.57]

It is practical to make the approximation that CM(oo) m Cm (t). This is justified if the membrane is saturated with the sample in a short period of time. This lag (steady-state) time may be approximated from Fick s second law as tlag = h2 / (n2Dm), where h is the membrane thickness in centimeters and Dm is the sample diffusivity inside the membrane, in cm2/s [40,41]. Mathematically, xLAG is the time at which Fick s second law has transformed into the limiting situation of Fick s first law. In the PAMPA approximation, the lag time is taken as the time when solute molecules first appear in the acceptor compartment. This is a tradeoff approximation to achieve high-throughput speed in PAMPA. With h = 125 pm and Dm 10 7 cm2/s, it should take 3 min to saturate the lipid membrane with sample. The observed times are of the order of 20 min (see below), short enough for our purposes. Cools... [Pg.143]

Zi(Air, x) and 7)(N2, x) are spin-lattice relaxation times of nitroxides in samples equilibrated with atmospheric air and nitrogen, respectively. Note that W(x) is normalized to the sample equilibrated with the atmospheric air. W(x) is proportional to the product of the local translational diffusion coefficient D(x) and the local concentration C(x) of oxygen at a depth x in the membrane, which is in equilibrium with the atmospheric air ... [Pg.197]

Here x from Equation 10.4 is changed to the two-membrane domain FOT and SLOT with the depth fixed (the same spin label is distributed between the FOT and SLOT domains). W(FOT) and W(SLOT) are oxygen transport parameters in each domain and represent the collision rate in samples equilibrated with air. Figure 10.9 illustrates the basis of the discrimination by oxygen transport (DOT) method, showing saturation-recovery EPR signals for 5-SASL in membranes... [Pg.199]

Now consider the gradient-pH case, with pHD 3 and pHa 7.4. In Fig. 3.5b, the dashed curve (donor concentration) corresponding to pH 3 decreases more steeply after the retention period than that of the previous iso-pH example. Furthermore, there is not the large initial drop due to the disappearance of the sample into the membrane in the gradient-pH case, retention drops from 56% to 9%. Thus, more of the compound is available for sample concentration determination. The solid curve (acceptor concentration) corresponding to pH 3 also grows more rapidly than in the iso-pH example. The dashed and solid curves cross at 7 h, with C(t)/CD(0) close to the 0.5 value. Note also, that about 70% of the compound ends up in the acceptor well at the end of 16 h - much higher than is possible with the iso-pH method. [Pg.67]

W., Lifetime of neutral-carrier-based liquid membranes in aqueous samples and blood and the lipophilicity of membrane components, Anal. Chem. 1991 63 596-603. [Pg.98]

Figure 6.6 ULtrafiLtration separates molecules based on size and shape, (a) Diagrammatic representation of a typical laboratory-scale ultrafiltration system. The sample (e.g. crude protein solution) is placed in the ultrafiltration chamber, where it sits directly above the ultrafilter membrane. The membrane, in turn, sits on a macroporous support to provide it with mechanical strength. Pressure is then applied (usually in the form of an inert gas), as shown. Molecules larger than the pore diameter (e.g. large proteins) are retained on the upstream side of the ultrafilter membrane. However, smaller molecules (particularly water molecules) are easily forced through the pores, thus effectively concentrating the protein solution (see also (b)). Membranes that display different pore sizes, i.e. have different molecular mass cut-off points, can be manufactured, (c) Photographic representation of an industrial-scale ultrafiltration system (photograph courtesy of Elga Ltd, UK)... Figure 6.6 ULtrafiLtration separates molecules based on size and shape, (a) Diagrammatic representation of a typical laboratory-scale ultrafiltration system. The sample (e.g. crude protein solution) is placed in the ultrafiltration chamber, where it sits directly above the ultrafilter membrane. The membrane, in turn, sits on a macroporous support to provide it with mechanical strength. Pressure is then applied (usually in the form of an inert gas), as shown. Molecules larger than the pore diameter (e.g. large proteins) are retained on the upstream side of the ultrafilter membrane. However, smaller molecules (particularly water molecules) are easily forced through the pores, thus effectively concentrating the protein solution (see also (b)). Membranes that display different pore sizes, i.e. have different molecular mass cut-off points, can be manufactured, (c) Photographic representation of an industrial-scale ultrafiltration system (photograph courtesy of Elga Ltd, UK)...

See other pages where Sample in membrane is mentioned: [Pg.1408]    [Pg.2099]    [Pg.1336]    [Pg.643]    [Pg.1408]    [Pg.2099]    [Pg.1336]    [Pg.643]    [Pg.206]    [Pg.440]    [Pg.244]    [Pg.471]    [Pg.355]    [Pg.143]    [Pg.442]    [Pg.602]    [Pg.464]    [Pg.382]    [Pg.396]    [Pg.76]    [Pg.28]    [Pg.173]    [Pg.195]    [Pg.29]    [Pg.343]    [Pg.98]    [Pg.110]    [Pg.326]    [Pg.501]    [Pg.139]    [Pg.142]    [Pg.8]    [Pg.562]    [Pg.224]    [Pg.120]    [Pg.333]    [Pg.42]   
See also in sourсe #XX -- [ Pg.215 ]

See also in sourсe #XX -- [ Pg.643 ]




SEARCH



© 2024 chempedia.info