Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure condensation and

The reactor residence time is about 45 minutes, a 95 per cent approach to equilibrium being achieved in this time. The ammonia is fed directly to the reactor, but the carbon dioxide is fed to the reactor upwardly through a stripper, down which flows the product stream from the reactor. The carbon dioxide decomposes some of the carbamate in the product stream, and takes ammonia and water to a high-pressure condenser. The stripper is steam heated and operates at 180°C, whilst the high-pressure condenser is at 170°C and the heat released in it by recombination of ammonia and carbon dioxide to carbamate is used to raise steam. Additional recycled carbamate solution is added to the stream in the high-pressure condenser, and the combined flow goes to the reactor. [Pg.976]

In the condenser and evaporator there is a vapour flow, liquid flow, interface position, radial heat transfer with kinetic reaction pressure, liquid pressure, vapour pressure, condensation and evaporation, shear stress, geometry, adhesion pressure, convective heat transport, radial heat transfer under the influence of the gravity field. [Pg.467]

Selecting Setup under the column block (PREFLASH) opens the window shown in Figure 11.19. There are page tabs of Configuration, Streams, Pressure, Condenser, and Furnace. The column is set up to have 10 stages, no reboiler and a partial condenser. [Pg.323]

For multiple pressure steam systems, flash steam can be generated from higher-pressure condensate and used as low-pressure steam. Thus, for low pressure steam where the pipe is sized to handle the extra condensate generated in start-up, it should... [Pg.392]

Effect of curvature on saturation pressure condensation and vaporization in porous media. [Pg.68]

Standard-state fugacities at zero pressure are evaluated using the Equation (A-2) for both condensable and noncondensable components. The Rackett Equation (B-2) is evaluated to determine the liquid molar volumes as a function of temperature. Standard-state fugacities at system temperature and pressure are given by the product of the standard-state fugacity at zero pressure and the Poynting correction shown in Equation (4-1). Double precision is advisable. [Pg.308]

Establish the heat integration potential of simple columns. Introduce heat recovery between reboilers, intermediate reboilers, condensers, intermediate condensers, and other process streams. Shift the distillation column pressures to allow integration, where possible, using the grand composite curve to assess the heat integration potential. [Pg.348]

On compression, a gaseous phase may condense to a liquid-expanded, L phase via a first-order transition. This transition is difficult to study experimentally because of the small film pressures involved and the need to avoid any impurities [76,193]. There is ample evidence that the transition is clearly first-order there are discontinuities in v-a plots, a latent heat of vaporization associated with the transition and two coexisting phases can be seen. Also, fluctuations in the surface potential [194] in the two phase region indicate two-phase coexistence. The general situation is reminiscent of three-dimensional vapor-liquid condensation and can be treated by the two-dimensional van der Waals equation (Eq. Ill-104) [195] or statistical mechanical models [191]. [Pg.132]

Not all molecules striking a surface necessarily condense, and Z in Eq. VII-2 gives an upper limit to the rate of condensation and hence to the rate of evaporation. Alternatively, actual measurement of the evaporation rate gives, through Eq. VII-2, an effective vapor pressure Pe that may be less than the actual vapor pressure P. The ratio Pe/P is called the vaporization coefficient a. As a perhaps extreme example, a is only 8.3 X 10" for (111) surfaces of arsenic [11]. [Pg.258]

If an ionic surfactant is present, the potentials should vary as shown in Fig. XIV-5c, or similarly to the case with nonsurfactant electrolytes. In addition, however, surfactant adsorption decreases the interfacial tension and thus contributes to the stability of the emulsion. As discussed in connection with charged monolayers (see Section XV-6), the mutual repulsion of the charged polar groups tends to make such films expanded and hence of relatively low rr value. Added electrolyte reduces such repulsion by increasing the counterion concentration the film becomes more condensed and its film pressure increases. It thus is possible to explain qualitatively the role of added electrolyte in reducing the interfacial tension and thereby stabilizing emulsions. [Pg.508]

Add 15 g, of chloroacetic acid to 300 ml. of aqueous ammonia solution d, o-88o) contained in a 750 ml. conical flask. (The manipulation of the concentrated ammonia should preferably be carried out in a fume-cupboard, and great care taken to avoid ammonia fumes.) Cork the flask loosely and set aside overnight at room temperature. Now concentrate the solution to about 30 ml. by distillation under reduced pressure. For this purpose, place the solution in a suitable distilling-flask with some fragments of unglazed porcelain, fit a capillary tube to the neck of the flask, and connect the flask through a water-condenser and receiver to a water-pump then heat the flask carefully on a water-bath. Make the concentrated solution up to 40 ml. by the addition of water, filter, and then add 250 ml. of methanol. Cool the solution in ice-water, stir well, and set aside for ca. I hour, when the precipitation of the glycine will be complete. [Pg.130]

Place 80 g, of hydroxylamine sulphate (or 68-5 g. of the hydrochloride), 25 g. of hydrated sodium acetate, and 100 ml. of water in a 500 ml. flask fitted with a stirrer and a reflux water-condenser, and heat the stirred solution to 55-60°. Run in 35 g (42 nil,) of -hexyl methyl ketone, and continue the heating and vigorous stirring for ij hours. (The mixture can conveniently be set aside overnight after this stage.) Extract the oily oxime from the cold mixture twice with ether. Wash the united ethereal extract once with a small quantity of water, and dry it with sodium sulphate. Then distil off the ether from the filtered extract, preferably using a distillation flask of type shown in Fig. 41 (p. 65) and of ca, 50 ml, capacity, the extract being run in as fast as the ether distils, and then fractionally distil the oxime at water-pump pressure. Collect the liquid ketoxime, b.p. 110-111713 mm. Yield, 30-32 g. [Pg.225]

During this process some water will have condensed in the steam-trap D and also in the distillation bulb F. If at the end of the steaming-out process, the Bunsen burner is removed from the generator A, the pressure in A will be reduced owing to steam condensation, and the liquid in F will be sucked back into D provided that the benL-over tube is carefully adjusted, the bulb F may be almost completely emptied of liquid as desired. Finally the condensed water in the steam-trap D may be run out by op ing the tap Tj. [Pg.494]

For alcohols of b.p. below 150°, mix 0- 5 g. of 3-nitrophthalic anhydride (Section VII,19) and 0-5 ml. (0-4 g.) of the dry alcohol in a test-tube fitted with a short condenser, and heat under reflux for 10 minutes after the mixture liquefies. For alcohols boiling above 150°, use the same quantities of reactants, add 5 ml. of dry toluene, heat under reflux until all the anhydride has dissolved and then for 20 minutes more remove the toluene under reduced pressure (suction with water pump). The reaction product usually solidifies upon cooling, particularly upon rubbing with a glass rod and standing. If it does not crystallise, extract it with dilute sodium bicarbonate solution, wash the extract with ether, and acidify. Recrystallise from hot water, or from 30 to 40 per cent, ethanol or from toluene. It may be noted that the m.p. of 3-nitrophthalic acid is 218°. [Pg.265]

In a 1-litre three-necked flask, fitted with a mechanical stirrer, reflux condenser and a thermometer, place 200 g. of iodoform and half of a sodium arsenite solution, prepared from 54-5 g. of A.R. arsenious oxide, 107 g. of A.R. sodium hydroxide and 520 ml. of water. Start the stirrer and heat the flask until the thermometer reads 60-65° maintain the mixture at this temperature during the whole reaction (1). Run in the remainder of the sodium arsenite solution during the course of 15 minutes, and keep the reaction mixture at 60-65° for 1 hour in order to complete the reaction. AUow to cool to about 40-45° (2) and filter with suction from the small amount of solid impurities. Separate the lower layer from the filtrate, dry it with anhydrous calcium chloride, and distil the crude methylene iodide (131 g. this crude product is satisfactory for most purposes) under diminished pressure. Practically all passes over as a light straw-coloured (sometimes brown) liquid at 80°/25 mm. it melts at 6°. Some of the colour may be removed by shaking with silver powder. The small dark residue in the flask solidifies on cooling. [Pg.300]

Place 100 g. of adipic acid in a 750 ml. round-bottomed flask and add successively 100 g. (127 ml.) of absolute ethyl alcohol, 250 ml. of sodium-dried benzene and 40 g. (22 ml.) of concentrated sulphuric acid (the last-named cautiously and with gentle swirling of the contents of the flask). Attach a reflux condenser and reflux the mixture gently for 5-6 hours. Pour the reaction mixture into excess of water (2-3 volumes), separate the benzene layer (1), wash it with saturated sodium bicarbonate solution until eflfervescence ceases, then with water, and dry with anhydrous magnesium or calcium sulphate. Remove most of the benzene by distillation under normal pressure until the temperature rises to 100° using the apparatus of Fig. II, 13, 4 but substituting a 250 ml. Claisen flask for the distilling flask then distil under reduced pressure and collect the ethyl adipate at 134-135°/17 mm. The yield is 130 g. [Pg.386]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]


See other pages where Pressure condensation and is mentioned: [Pg.241]    [Pg.232]    [Pg.396]    [Pg.180]    [Pg.241]    [Pg.232]    [Pg.396]    [Pg.180]    [Pg.121]    [Pg.334]    [Pg.345]    [Pg.103]    [Pg.610]    [Pg.1642]    [Pg.103]    [Pg.267]    [Pg.274]    [Pg.69]    [Pg.112]    [Pg.418]    [Pg.419]    [Pg.431]    [Pg.540]    [Pg.603]    [Pg.604]    [Pg.640]    [Pg.670]    [Pg.679]    [Pg.703]    [Pg.763]    [Pg.768]    [Pg.768]    [Pg.769]    [Pg.782]    [Pg.791]   
See also in sourсe #XX -- [ Pg.287 , Pg.334 , Pg.335 ]




SEARCH



Condenser and Pressure Control—Single-Phase Product

Condenser and Pressure Control—Two-Phase Products

Condensers and tower pressure control

Condensing pressure

Downstream Pressure and Condensation Strategy

Effect of Curvature on Saturation. Pressure Condensation and Vaporization in Porous Media

High and Low Pressure Regimes (Condensed Phase Controlled Burning)

Pressure and Type of Condenser

Pressure condensation

Pressure condenser

Reboiler, Condenser, and Pressure Controls

© 2024 chempedia.info