Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Standard state fugacity

Here the superscript zero implies, for real gases, a unit fugacity standard state. If, during an experiment, the fugacity happens to coincide with the standard state, then the activity is one, and the chemical potential is equal to p°. [Pg.99]

The fact that fugacities often appear in the ratio f/f° has led to a common confusion about fugacity standard states. For example in one textbook the authors say... [Pg.205]

When the same standard-state fugacity is used in both phases. Equation (5) can be rewritten... [Pg.15]

It is strictly for convenience that certain conventions have been adopted in the choice of a standard-state fugacity. These conventions, in turn, result from two important considerations (a) the necessity for an unambiguous thermodynamic treatment of noncondensable components in liquid solutions, and (b) the relation between activity coefficients given by the Gibbs-Duhem equation. The first of these considerations leads to a normalization for activity coefficients for nonoondensable components which is different from that used for condensable components, and the second leads to the definition and use of adjusted or pressure-independent activity coefficients. These considerations and their consequences are discussed in the following paragraphs. [Pg.17]

For such components, as the composition of the solution approaches that of the pure liquid, the fugacity becomes equal to the mole fraction multiplied by the standard-state fugacity. In this case,the standard-state fugacity for component i is the fugacity of pure liquid i at system temperature T. In many cases all the components in a liquid mixture are condensable and Equation (13) is therefore used for all components in this case, since all components are treated alike, the normalization of activity coefficients is said to follow the symmetric convention. ... [Pg.18]

Henry s constant is the standard-state fugacity for any component i whose activity coefficient is normalised by Equation (14). ... [Pg.19]

In a binary liquid solution containing one noncondensable and one condensable component, it is customary to refer to the first as the solute and to the second as the solvent. Equation (13) is used for the normalization of the solvent s activity coefficient but Equation (14) is used for the solute. Since the normalizations for the two components are not the same, they are said to follow the unsymmetric convention. The standard-state fugacity of the solvent is the fugacity of the pure liquid. The standard-state fugacity of the solute is Henry s constant. [Pg.19]

The use of Henry s constant for a standard-state fugacity means that the standard-state fugacity for a noncondensable component depends not only on the temperature but also on the nature of the solvent. It is this feature of the unsymmetric convention which is its greatest disadvantage. As a result of this disadvantage special care must be exercised in the use of the unsymmetric convention for multicomponent solutions, as discussed in Chapter 4. [Pg.19]

The standard-state fugacity of any component must be evaluated at the same temperature as that of the solution, regardless of whether the symmetric or unsymmetric convention is used for activity-coefficient normalization. But what about the pressure At low pressures, the effect of pressure on the thermodynamic properties of condensed phases is negligible and under such con-... [Pg.19]

The pressure at which standard-state fugacities are most conveniently evaluated is suggested by considerations based on the Gibbs-Duhem equation which says that at constant temperature and pressure... [Pg.20]

We find that the standard-state fugacity fV is the fugacity of pure liquid i at the temperature of the solution and at the reference pressure P. ... [Pg.21]

Standard-State Fugacity for a Noncondensable Component For a noncondensable component we write... [Pg.22]

In some cases, the temperature of the system may be larger than the critical temperature of one (or more) of the components, i.e., system temperature T may exceed T. . In that event, component i is a supercritical component, one that cannot exist as a pure liquid at temperature T. For this component, it is still possible to use symmetric normalization of the activity coefficient (y - 1 as x - 1) provided that some method of extrapolation is used to evaluate the standard-state fugacity which, in this case, is the fugacity of pure liquid i at system temperature T. For highly supercritical components (T Tj,.), such extrapolation is extremely arbitrary as a result, we have no assurance that when experimental data are reduced, the activity coefficient tends to obey the necessary boundary condition 1... [Pg.58]

Enthalpies are referred to the ideal vapor. The enthalpy of the real vapor is found from zero-pressure heat capacities and from the virial equation of state for non-associated species or, for vapors containing highly dimerized vapors (e.g. organic acids), from the chemical theory of vapor imperfections, as discussed in Chapter 3. For pure components, liquid-phase enthalpies (relative to the ideal vapor) are found from differentiation of the zero-pressure standard-state fugacities these, in turn, are determined from vapor-pressure data, from vapor-phase corrections and liquid-phase densities. If good experimental data are used to determine the standard-state fugacity, the derivative gives enthalpies of liquids to nearly the same precision as that obtained with calorimetric data, and provides reliable heats of vaporization. [Pg.82]

Correlations for standard-state fugacities at 2ero pressure, for the temperature range 200° to 600°K, were generated for pure fluids using the best available vapor-pressure data. [Pg.138]

Below the temperature of the lowest experimental datum, standard-state fugacities were obtained by simple extrapolation. Uncertainties assigned to these fugacities are largest when the fugacities are smallest, for two reasons (1) the extrapolation... [Pg.141]

At temperatures above those corresponding to the highest experimental pressures, data were generated using the Lyckman correlation all of these were assigned an uncertainty of 5% of the standard-state fugacity at zero pressure. Frequently, this uncertainty amounts to one half or more atmosphere for the lowest point, and to 1 to 5 atmospheres for the highest point. [Pg.142]

Appendix C-2 gives constants for the zero-pressure, pure-liquid, standard-state fugacity equation for condensable components and constants for the hypothetical liquid standard-state fugacity equation for noncondensable components... [Pg.143]

PURE calculates pure liquid standard-state fugacities at zero pressure, pure-component saturated liquid molar volume (cm /mole), and pure-component liquid standard-state fugacities at system pressure. Pure-component hypothetical liquid reference fugacities are calculated for noncondensable components. Liquid molar volumes for noncondensable components are taken as zero. [Pg.308]

Standard-state fugacities at zero pressure are evaluated using the Equation (A-2) for both condensable and noncondensable components. The Rackett Equation (B-2) is evaluated to determine the liquid molar volumes as a function of temperature. Standard-state fugacities at system temperature and pressure are given by the product of the standard-state fugacity at zero pressure and the Poynting correction shown in Equation (4-1). Double precision is advisable. [Pg.308]

Output FIP(I) vector (length 20) of standard-state fugacity (bars) (I = 1,N)... [Pg.308]

FO(I) Vector (length 20) of pure-component liquid standard-state fugacities at zero pressure or hypothetical liquid standard-... [Pg.308]

The values of the thermodynamic properties of the pure substances given in these tables are, for the substances in their standard states, defined as follows For a pure solid or liquid, the standard state is the substance in the condensed phase under a pressure of 1 atm (101 325 Pa). For a gas, the standard state is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure. [Pg.532]

Only those components which are gases contribute to powers of RT. More fundamentally, the equiUbrium constant should be defined only after standard states are specified, the factors in the equiUbrium constant should be ratios of concentrations or pressures to those of the standard states, the equiUbrium constant should be dimensionless, and all references to pressures or concentrations should really be references to fugacities or activities. Eor reactions involving moderately concentrated ionic species (>1 mM) or moderately large molecules at high pressures (- 1—10 MPa), the activity and fugacity corrections become important in those instances, kineticists do use the proper relations. In some other situations, eg, reactions on a surface, measures of chemical activity must be introduced. Such cases may often be treated by straightforward modifications of the basic approach covered herein. [Pg.507]

Convenience suggests elimination of the ia equation 245 ia favor of fugacities. Equation 155 for species / ia its standard state is subtracted from equation... [Pg.501]

II The increment in the free energy, AF, in the reaction of forming the given substance in its standard state from its elements in their standard states. The standard states are for a gas, fugacity (approximately equal to the pressure) of 1 atm for a pure liquid or solid, the substance at a pressure of 1 atm for a substance in aqueous solution, the hyj)othetical solution of unit molahty, which has all the properties of the infinitely dilute solution except the property of concentration. [Pg.239]

Equilibrium Constants For practical application, Eq. (4-336) must be reformulated. The initial step is elimination of the in favor of fugacities. Equation (4-74) for species i in its standard state is subtracted from Eq. (4-77) for species i in the equilibrium mixture, giving... [Pg.542]

If Gf is arbitrarily set equal to zero for all elements in their standard states, then for compounds Gf = AG°, the standard Gibbs-energy change of formation for species i. In addition, the fugacity is eliminated in favor of the fugacity coefficient by Eq. (4-79),/ = yi jP. With these substitutions, the equation for becomes... [Pg.543]

The ratio f/f° is called activity, a. Note This is not the activity coefficient. The activity is an indication of how active a substance is relative to its standard state (not necessarily zero pressure), f°. The standard state is the reference condition, which may be anything however, most references are to constant temperature, with composition and pressure varying as required. Fugacity becomes a corrected pressure, representing a specific component s deviation from ideal. The fugacity coefficient is ... [Pg.5]

Activity coefficients are equal to 1.0 for an ideal solution when the mole fraction is equal to the activity. The activity (a) of a component, i, at a specific temperature, pressure and composition is defined as the ratio of the fugacity of i at these conditions to the fugacity of i at the standard state [54]. [Pg.12]

For liquid mixtures at low pressures, it is not important to specify with care the pressure of the standard state because at low pressures the thermodynamic properties of liquids, pure or mixed, are not sensitive to the pressure. However, at high pressures, liquid-phase properties are strong functions of pressure, and we cannot be careless about the pressure dependence of either the activity coefficient or the standard-state fugacity. [Pg.155]


See other pages where Standard state fugacity is mentioned: [Pg.205]    [Pg.205]    [Pg.15]    [Pg.17]    [Pg.20]    [Pg.21]    [Pg.21]    [Pg.23]    [Pg.39]    [Pg.56]    [Pg.59]    [Pg.138]    [Pg.142]    [Pg.150]    [Pg.290]    [Pg.502]    [Pg.542]    [Pg.101]    [Pg.83]    [Pg.154]   
See also in sourсe #XX -- [ Pg.185 , Pg.456 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Fugacity

Standard States Using Fugacities

Standard state

© 2024 chempedia.info