Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preconcentrating Electrodes

Practical examples of using preconcentrating CMEs include the use of a mixed 2,9-dimethyl-l,10-phenanthroline/carbon paste electrode for trace [Pg.142]

FIGURE 4-15 Cyclic voltanmiograms for 1.5 x 10 3 M ribose (a), glucose (b), galactose (c), and fructose (d) recorded at a Ru02-modified carbon-paste electrode. Dotted lines were obtained in carbohydrate-free solutions. (Reproduced with permission from reference 50.) [Pg.122]

Practical examples of using preconcentrating CMEs include the use of a mixed 2,9-dimcthyl-1.10-phenanthrolinc/carbon-pastc electrode for trace measurements of copper (55), the use of clay-containing carbon pastes for voltammetric measurements of iron (56), the use of polyelectrolyte coatings for the uptake and [Pg.122]

FIGURE 4-17 Preconcentrating surfaces based on covalent binding of the ligand to a polymer backbone. Q = charge A = electrode area T = surface coverage. (Reproduced with permission from reference 52.) [Pg.123]


I Ion exchange -resin column On-line preconcentration electrode Iodide selective electrode InM [328]... [Pg.161]

Yet another mechanism of electron transfer at preconcentrated electrodes can be envisaged. This mechanism involves dissolution/retrapping of the species, according to... [Pg.150]

Ion Removal and Metal Oxide Electrodes. The ethylenediamine ( )-functional silane, shown in Table 3 (No. 5), has been studied extensively as a sdylating agent on siUca gel to preconcentrate polyvalent anions and cations from dilute aqueous solutions (26,27). Numerous other chelate-functional silanes have been immobilized on siUca gel, controUed-pore glass, and fiber glass for removal of metal ions from solution (28,29). [Pg.73]

Stripping voltammetry procedure has been developed for determination of thallium(I) traces in aqueous medium on a mercury film electrode with application of thallium preconcentration by coprecipitation with manganese (IV) hydroxide. More than 90% of thallium present in water sample is uptaken by a deposit depending on conditions of prepai ation of precipitant. Direct determination of thallium was carried out by stripping voltammetry in AC mode with anodic polarization of potential in 0,06 M ascorbic acid in presence of 5T0 M of mercury(II) on PU-1 polarograph. [Pg.209]

Shipping analysis is an extremely sensitive electrochemical technique for measuring trace metals (19,20). Its remarkable sensitivity is attributed to the combination of an effective preconcentration step with advanced measurement procedures that generate an extremely favorable signal-to-background ratio. Since the metals are preconcentrated into the electrode by factors of 100 to 1000, detection limits are lowered by 2 to 3 orders of magnitude compared to solution-phase voltammetric measurements. Hence, four to six metals can be measured simultaneously in various matrices at concentration levels down to 10 10 i. utilizing relatively inexpensive... [Pg.75]

Essentially, stripping analysis is a two-step technique. The first, or deposition, step involves die electrolytic deposition of a small portion of the metal ions hi solution into die mercury electrode to preconcentrate the metals. This is followed by die shipping step (the measurement step), which involves die dissolution (shipping) of die deposit. Different versions of stripping analysis can be employed, depending upon die nature of the deposition and measurement steps. [Pg.76]

The mercury film electrode has a higher surface-to-volume ratio than the hanging mercury drop electrode and consequently offers a more efficient preconcentration and higher sensitivity (equations 3-22 through 3-25). hi addition, the total exhaustion of thin mercury films results in sharper peaks and hence unproved peak resolution in multicomponent analysis (Figure 3-14). [Pg.79]

Provided electron transfer between the electrode and solute species is not interrupted by the coating, even electroinactive films can offer interesting applications. Thus, a chiral environment in the surface layer may impose stereoselectivity in the follow-up reactions of organic or organometallic intermediates. Furthermore, polymer layers may be used to obtain diffusional permeation selectivity for certain substrates, or as a preconcentration medium for analyzing low concentration species. [Pg.51]

Preconcentration of metal cations is also achieved by providing ligand binding sites in polymer layers, e.g. 4-methyl-4 -vinyl-2,2 -bipyridine for Fe " and Cu ". Carbon paste electrodes containing dimethylglyoxime or o-phenanthroline... [Pg.76]

The presence of redox catalysts in the electrode coatings is not essential in the c s cited alx)ve because the entrapped redox species are of sufficient quantity to provide redox conductivity. However, the presence of an additional redox catalyst may be useful to support redox conductivity or when specific chemical redox catalysis is used. An excellent example of the latter is an analytical electrode for the low level detection of alkylating agents using a vitamin 8,2 epoxy polymer on basal plane pyrolytic graphite The preconcentration step involves irreversible oxidative addition of R-X to the Co complex (see Scheme 8, Sect. 4.4). The detection by reductive voltammetry, in a two electron step, releases R that can be protonated in the medium. Simultaneously the original Co complex is restored and the electrode can be re-used. Reproducible relations between preconcentration times as well as R-X concentrations in the test solutions and voltammetric peak currents were established. The detection limit for methyl iodide is in the submicromolar range. [Pg.76]

Since different metals strip from mercury electrodes at characteristic peak potentials, several metal ions can be determined simultaneously. Metal ions which have been determined by ASV at a mercury electrode are BP, Cd, Cu, Ga, Ge, In, NP, Pb, Sb, Sn, Tl, and Zn. Solid electrodes such as graphite enable Hg, Au, Ag, and PP to be determined by ASV. In this case, the metal is preconcentrated on the surface of the electrode as a metallic film, which is then stripped off by the positive potential scan. [Pg.41]

Special electrochemical sensors that operate on the principle of the voltammetric cell have been developed. The area of chemically modified solid electrodes (CMSEs) is a rapidly growing field, giving rise to the development of new electroanalytical methods with increased selectivity and sensitivity for the determination of a wide variety of analytes [490]. CMSEs are typically used to preconcentrate the electroactive target analyte(s) from the solution. The use of polymer coatings showing electrocatalytic activity to modify electrode surfaces constitutes an interesting approach to fabricate sensing surfaces useful for analytical purposes [491]. [Pg.670]

Modification of electrodes by electroactive polymers has several practical applications. The mediated electron transfer to solution species can be used in electrocatalysis (e.g. oxygen reduction) or electrochemical synthesis. For electroanalysis, preconcentration of analysed species in an ion-exchange film may remarkably increase the sensitivity (cf. Section 2.6.4). Various... [Pg.333]

Determination of trace metals in seawater represents one of the most challenging tasks in chemical analysis because the parts per billion (ppb) or sub-ppb levels of analyte are very susceptible to matrix interference from alkali or alkaline-earth metals and their associated counterions. For instance, the alkali metals tend to affect the atomisation and the ionisation equilibrium process in atomic spectroscopy, and the associated counterions such as the chloride ions might be preferentially adsorbed onto the electrode surface to give some undesirable electrochemical side reactions in voltammetric analysis. Thus, most current methods for seawater analysis employ some kind of analyte preconcentration along with matrix rejection techniques. These preconcentration techniques include coprecipitation, solvent extraction, column adsorption, electrodeposition, and Donnan dialysis. [Pg.128]

In contrast, the coupling of electrochemical and spectroscopic techniques, e.g., electrodeposition of a metal followed by detection by atomic absorption spectrometry, has received limited attention. Wire filaments, graphite rods, pyrolytic graphite tubes, and hanging drop mercury electrodes have been tested [383-394] for electrochemical preconcentration of the analyte to be determined by atomic absorption spectroscopy. However, these ex situ preconcentration methods are often characterised by unavoidable irreproducibility, contaminations arising from handling of the support, and detection limits unsuitable for lead detection at sub-ppb levels. [Pg.186]

Wrembel [485] gives details of a procedure for the determination of mercury in seawater by low-pressure ring-discharge atomic emission spectrometry with electrolytic preconcentration on copper and platinum mesh electrodes. Between 40 5 (open sea) and 50 8 (shore area) xg/l mercury was found in Baltic sea waters. [Pg.201]

Certain trace substances such as selenium (IV) can be determined by differential cathodic stripping voltammetry (DPCSV). For selenium a rather positive preconcentration potential of-0.2 V is adjusted. Selenium (IV) is reduced to Se2", and Hg from the electrode is oxidised to Hg2+ at this potential. It forms, with Se2" on the electrode, a layer of insoluble HgSe, and in this manner the preconcentration is achieved. Subsequently the potential is altered in the cathodic direction in the differential pulse mode. The resulting mercury (II) peak produced by the Hg11 reduction is proportional to the bulk concentration of SeIV in the analyte. [Pg.220]

Cathodic stripping voltammetry has been used [807] to determine lead, cadmium, copper, zinc, uranium, vanadium, molybdenum, nickel, and cobalt in water, with great sensitivity and specificity, allowing study of metal specia-tion directly in the unaltered sample. The technique used preconcentration of the metal at a higher oxidation state by adsorption of certain surface-active complexes, after which its concentration was determined by reduction. The reaction mechanisms, effect of variation of the adsorption potential, maximal adsorption capacity of the hanging mercury drop electrode, and possible interferences are discussed. [Pg.277]

Mykytiuk et al. [184] have described a stable isotope dilution sparksource mass spectrometric method for the determination of cadmium, zinc, copper, nickel, lead, uranium, and iron in seawater, and have compared results with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. These workers found that to achieve the required sensitivity it was necessary to preconcentrate elements in the seawater using Chelex 100 [121] followed by evaporation of the desorbed metal concentrate onto a graphite or silver electrode for isotope dilution mass spectrometry. [Pg.287]

Aniline, methyl aniline, 1-naphthylamine, and diphenylamine at trace levels were determined using this technique and electrochemical detection. Two electrochemical detectors (a thin-layer, dual glassy-carbon electrode cell and a dual porous electrode system) were compared. The electrochemical behavior of the compounds was investigated using hydrodynamic and cyclic voltammetry. Detection limits of 15 and 1.5nmol/l were achieved using colourimetric and amperometric cells, respectively, when using an in-line preconcentration step. [Pg.412]


See other pages where Preconcentrating Electrodes is mentioned: [Pg.121]    [Pg.122]    [Pg.141]    [Pg.142]    [Pg.1551]    [Pg.122]    [Pg.236]    [Pg.168]    [Pg.121]    [Pg.122]    [Pg.141]    [Pg.142]    [Pg.1551]    [Pg.122]    [Pg.236]    [Pg.168]    [Pg.518]    [Pg.520]    [Pg.72]    [Pg.346]    [Pg.186]    [Pg.187]    [Pg.75]    [Pg.75]    [Pg.75]    [Pg.396]    [Pg.670]    [Pg.113]    [Pg.469]    [Pg.272]    [Pg.274]    [Pg.275]    [Pg.127]   


SEARCH



Preconcentration

Preconcentration preconcentrator

Preconcentrator

© 2024 chempedia.info