Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium chloride, properties

Sa.lts Salting out metal chlorides from aqueous solutions by the common ion effect upon addition of HCl is utilized in many practical apphcations. Typical data for ferrous chloride [13478-10-9] FeCl2, potassium chloride [7447-40-7] KCl, and NaCl are shown in Table 9. The properties of the FeCl2-HCL-H2 0 system are important to the steel-pickling industry (see Metal SURFACE TREATMENTS Steel). Other metal chlorides that are salted out by the addition of hydrogen chloride to aqueous solutions include those of magnesium, strontium, and barium. [Pg.442]

Approximately 98% of the potassium recovered ia primary ore and natural brine refining operations is recovered as potassium chloride. The remaining 2% consists of potassium recovered from a variety of sources. Potassium produced from these sources occurs as potassium sulfate combiaed with magnesium sulfate. Prom a practical point of view, the basic raw material for ak of the potassium compounds discussed ia this article, except potassium tartrate, is potassium chloride. Physical properties of selected potassium compounds are Hsted ia Table 3, solubkities ia Table 4. [Pg.523]

Scrap that is unsuitable for recycling into products by the primary aluminum producers is used in the secondary aluminum industry for castings that have modest property requirements. Oxide formation and dross buildup are encountered in the secondary aluminum industry, and fluxes are employed to assist in the collection of dross and removal of inclusions and gas. Such fluxes are usually mixtures of sodium and potassium chlorides. Fumes and residues from these fluxes and treatment of dross are problems of environmental and economic importance, and efforts are made to reclaim both flux and metal values in the dross. [Pg.124]

A biopolymer produced by a particular strain of bacteria is becoming widely used as a substitute for clay in low-solids muds. Since the polymer is attacked readily by bacteria, a bactericide such as paraformaldehyde or a chlorinated phenol also must be used with the biopolymer. The system has more stable properties than the extended bentonite system, because biopolymer exhibits good rheological properties in its own right, and has a better tolerance to salt and calcium. The system can be formulated to include salt, such as potassium chloride. Such a system, however, would then be classed as a nondispersed inhibitive fluid. [Pg.674]

KCl-polymer (potassium chloride-polymer) muds can be classified as low solids-polymer muds or as inhibitive muds, due to their application to drilling in water-sensitive, sloughing shales. The use of polymers and the concentration of potassium chloride provide inhibition of shales and clays for maximum hole stability. The inverted flow properties (high yield point, low plastic viscosity) achieved with polymers and prehydrated bentonite provide good hole cleaning with minimum hole erosion. [Pg.674]

In view of this, the properties of / films were examined after they had been subjected to increasing amounts of ion exchange . In order to do this, detached films were exposed at 65°C for 7 h to a universal buffer adjusted to a suitable pH and the resistance of the film measured at 25°C in 3 n and O OOlN potassium chloride. The results obtained with a pentaerythritol alkyd are shown in Fig. 14.4 from which it can be seen that as the pH of the conditioning solution increased, the resistance of the film fell, until at a pH of about 7.5 it suddenly dropped. The resistance of the film then followed that of the solution in which it was immersed, i.e. it became a D-type film. Similar results were obtained with films of a tung oil phenolic varnish, although in this case the change-over point occurred at a higher pH, i.e. about 9. [Pg.601]

In order to examine the effect of solvents, films of a solvent-free epoxypolyamine were cast, mounted in cells and their resistances measured in dilute and concentrated potassium chloride solution . All the films had / properties with resistances in the range 10 -I0 flcm. ... [Pg.604]

Potassium chloride (nitrate) bridge 583, 582 Potassium chromate as indicator, 343, 349 Potassium cyanoferrate(II) D. of, (ti) 384 Potassium cyanoferrate(III) D. of, (ti) 399 Potassium cyanonickelate(II) prepn., 328 Potassium dichromate solution analyses involving, 375 oxidising properties of, 375 internal indicators for, 377 preparation of, 0.02M, 375 redox indicators for, 377 standardisation of, by iron, (cm) 546, (ti) 376... [Pg.871]

Characteristic properties of endopectate lyases are the high pH optimum, and a requirement for Ca2+ ions in order to maintain catalytic activity. The pH optimum of various endopectate lyases ranges from 8.0 to 9.5 (Refs. 4, 178, 234, 236, 243). Besides activation by Ca2+ ions, the optimal concentration of which is 1 mM,234,236,244 strontium salts were also considered in the case of Bacillus sp. lyase.234 The enzyme from Pseudomonas sp. was also partly activated by magnesium chloride,178 and for the lyase of Clostridium felsineum, salts of other bivalent cations had an activating effect as well.245 (Ethylenedinitrilo)tetraacetic acid completely inactivated all of the lyases mentioned. The activity of endopectate lyase from Pseudomonas was also lessened in the presence of sodium chloride, potassium chloride, and dipotassium hydrogen phosphate (K2HP04). [Pg.374]

Fabuss, B. M. Korosi, A. "Properties of Sea Water and Solutions Contaning Sodium Chloride, Potassium Chloride, Sodium Sulfate and Magnesium Sulfate" Office of Saline Water, Report No. 384, U. S. Department of the Interior,... [Pg.483]

Parenterais The most important criterion for parenterals is that they have to be sterile for injection or infusion administration. Excipients are added to make parenterals isotonic with blood, improve solubility, and control pH of the solution. The solvent vehicles include water-for-injection, sterile sodium chloride, potassium chloride, or calcium chloride solution, and nonaqueous solvents such as alcohol, glycol, and glycerin. Preservatives, antioxidants, and stabilizers are normally added to enhance the properties of the drug product. [Pg.350]

Chemical properties.—Sodium chloride is necessary for the proper performance of the physiological functions of the body the other alkali chlorides are said to be poisonous 64 with small animals. According to C. Richet, the maximum dose per kilogram of animal, with subentaneous injections, is 01 grm. with lithium chloride 0 5 grm. with potassium chloride l O grm. with rubidium chloride and 0 5 grm. with caesium chloride. Lithium chloride is very hygroscopic sodium chloride is less hygroscopic, but it takes up O 5 to 0> 6 per cent, moisture on exposure... [Pg.552]

The properties Of ammonium chloride.—According to P. Groth, the symmetry of the crystals of ammonium chloride is the same as that of potassium chloride. [Pg.563]

The same argument can be made for each alkali atom because there is only one outer electron, one can model an alkah atom as a hydrogen-like atom with one electron and a nucleus made up of the true nucleus and the inner electrons. As above, this argument hinges on the fact that the inner electrons tend to be in the lowest possible states, while the Pauli exclusion principle forbids any two electrons from occupying the same state. And indeed, spectral data for alkali atoms resembles spectral data for hydrogen. Moreover, the chemical properties of the alkali atom is similar. For example, each combines easily with chlorine to form a salt such as potassium chloride, lithium chloride... [Pg.16]

Structural effects will probably affect kinetic properties, and as an example we mention the measurements by Brummer and Hills (15) of the volume of activation for potassium chloride conduction in water... [Pg.82]

It readily dissolves in water, yielding a yellow solution with an acid reaction, sufficiently powerful to decompose carbonates.2 With ammonia no precipitate is obtained, which property serves to distinguish this acid from hexachlor-platinic acid. With ammonium chloride or potassium chloride the corresponding hexachlor-platinate is produced. [Pg.296]

K. H. Johnston and E. L. McCandless, Enzymic hydrolysis of the potassium chloride soluble fraction of carrageenan. Properties of A-carrageenases from Pseudomonas carrageenovora, Can. J. Microbiol., 19 (1973) 779-788. [Pg.204]

Negative substituents enhance the acidic properties of phenols, an effect opposite to that produced with aromatic amines. o and p-Chloro-phenols are considerably stronger acids than phenol itself, and o- and p-nitrophenols are still stronger. Trinitrophenol, picric acid, is a strong acid whose salts are neutral and not decomposed by carbonic acid or by ammonium salts. These salts of picric acid can be salted out of neutral solutions by sodium or potassium chloride. With negatively substituted phenols, it may be possible to separate the phenolate from solutions which are neutral or weakly alkaline to litmus. In doubtful cases, just as with the amines, the precipitated material must be studied to determine whether it is the free phenol or one of its salts. The color of the precipitate gives an indication in the case of the nitrophenols, since the free phenols have only a weak yellow color, whereas the alkali salts are deep yellow. Solubility tests with indififerent solvents may be used in the case of uncolored compounds. Only the free phenol can be separated from acidic solutions. [Pg.30]

Many properties of electrolytic solutions are additive functions of the properties of the respective ions this is at once evident from the fact that the chemical properties of a salt solution are those of its constituent ions. For example, potassium chloride in solution has no chemical reactions which are characteristic of the compound itself, but only those of potassium and chloride ions. These properties are possessed equally by almost all potassium salts and all chlorides, respectively. Similarly, the characteristic chemical properties of acids and alkalis, in aqueous solution, are those of hydrogen and hydroxyl ions, respectively. Certain physical properties of electrolytes are also additive in nature the most outstanding example is the electrical conductance at infinite dilution. It will be seen in Chap. II that conductance values can be ascribed to all ions, and the appropriate conductance of any electrolyte is equal to the sum of the values for the individual ions. The densities of electrolytic solutions have also been found to be additive functions of the properties of the constituent ions. The catalytic effects of various acids and bases, and of mixtures with their salts, can be accounted for by associating a definite catalytic coefl5.cient with each type of ion since undissociated molecules often have appreciable catalytic properties due allowance must be made for their contribution. [Pg.12]


See other pages where Potassium chloride, properties is mentioned: [Pg.241]    [Pg.192]    [Pg.175]    [Pg.333]    [Pg.46]    [Pg.661]    [Pg.18]    [Pg.148]    [Pg.704]    [Pg.59]    [Pg.751]    [Pg.268]    [Pg.544]    [Pg.564]    [Pg.579]    [Pg.586]    [Pg.672]    [Pg.103]    [Pg.192]    [Pg.847]    [Pg.333]    [Pg.525]    [Pg.86]    [Pg.333]    [Pg.35]    [Pg.29]    [Pg.585]    [Pg.278]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Chlorides properties

Potassium chlorid

Potassium properties

© 2024 chempedia.info