Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Outer electrons

The electrovalent bond is formed by electrostatic attraction between oppositely charged ions. Thus Na, with one outer electron, loses this electron to achieve the noble gas Ne structure, while Cl with seven outer electrons, gains one electron to achieve the Ar structure. [Pg.415]

Co-ordinate bonds are formed by the sharing of electrons, both electrons being donated by the same atom. Thus the hydrogen ion, has no outer electrons whilst ammonia has eight, six shared with hydrogen atoms and one lone-pair. This lone-pair is donated to the hydrogen ion and the ammonium ion is formed ... [Pg.415]

AES ARABS Auger electron spectroscopy [77, 112-114, 117] Angle-resolved AES [85, 115] An incident high-energy electron ejects an inner electron from an atom an outer electron (e.g., L) falls into the vacancy and the released energy is given to an ejected Auger electron Surface composition... [Pg.314]

The first reliable energy band theories were based on a powerfiil approximation, call the pseudopotential approximation. Within this approximation, the all-electron potential corresponding to interaction of a valence electron with the iimer, core electrons and the nucleus is replaced by a pseudopotential. The pseudopotential reproduces only the properties of the outer electrons. There are rigorous theorems such as the Phillips-Kleinman cancellation theorem that can be used to justify the pseudopotential model [2, 3, 26]. The Phillips-Kleimnan cancellation theorem states that the orthogonality requirement of the valence states to the core states can be described by an effective repulsive... [Pg.108]

Figure Al.3.10. Pseudopotential model. The outer electrons (valence electrons) move in a fixed arrangement of chemically inert ion cores. The ion cores are composed of the nucleus and core electrons. Figure Al.3.10. Pseudopotential model. The outer electrons (valence electrons) move in a fixed arrangement of chemically inert ion cores. The ion cores are composed of the nucleus and core electrons.
Loss of one electron gives the noble gas configuration the very large difference between the first and second ionisation energies implies that an outer electronic configuration of a noble gas is indeed very stable. [Pg.29]

Ionisation energy falls as the group is descended, i.e. as the size of the atom increases and hence the distance between the nucleus and the outer electron increases. [Pg.29]

These apparent anomalies are readily explained. Elements in Group V. for example, have five electrons in their outer quantum level, but with the one exception of nitrogen, they all have unfilled (I orbitals. Thus, with the exception of nitrogen. Group V elements are able to use all their five outer electrons to form five covalent bonds. Similarly elements in Group VI, with the exception of oxygen, are able to form six covalent bonds for example in SF. The outer quantum level, however, is still incomplete, a situation found for all covalent compounds formed by elements after Period 2. and all have the ability to accept electron pairs from other molecules although the stability of the compounds formed may be low. This... [Pg.40]

Element Atomic number Outer electrons Density (gem ) m.p. (K) h.p. IK) Hardness 1 Brineii)... [Pg.120]

As any group is descended the size of the atom and number of electrons shielding the outer electrons from the nucleus increases and the ionisation energy falls (see Table 6.2.)... [Pg.134]

Boron achieves a covalency of three by sharing its three outer electrons, for example BFj (p. 153). By accepting an electron pair from a donor molecule or ion, boron can achieve a noble gas configuration whilst increasing its covalency to four, for example H3N->BCl3. K BF4. This is the maximum for boron and the second quantum level is now complete these 4-coordinate species are tetrahedral (p. 38). [Pg.140]

In this oxidation state the outer electronic configuration is 3d . so the compounds are necessarily paramagnetic (p. 229) and are coloured. [Pg.372]

With the outer electronic configuration 3d 4s vanadium can attain an oxidation state of -I- 5, but it shows all oxidation states between -I- 5 and -I- 2 in aqueous solution (cf titanium). [Pg.373]

Although vanadium has formally lost all its outer electrons in this state, the resemblance to the Group V elements is not so marked as that of titanium(IV) to Group IV. [Pg.373]

In the older form of the periodic table, chromium was placed in Group VI, and there are some similarities to the chemistry of this group (Chapter 10). The outer electron configuration, 3d 4s. indicates the stability of the half-filled d level. 3d 4s being more stable than the expected 3d 4s for the free atom. Like vanadium and titanium, chromium can lose all its outer electrons, giving chromium)VI) however, the latter is strongly oxidising and is... [Pg.376]

Although it exhibits a wide range of oxidation states, from + 7 (corresponding to formal loss of all the outer electrons. SdM.s ) to 0. [Pg.384]

Copper differs in its chemistry from the earlier members of the first transition series. The outer electronic configuration contains a completely-filled set of d-orbitals and. as expected, copper forms compounds where it has the oxidation state -)-l. losing the outer (4s) electron and retaining all the 3d electrons. However, like the transition metals preceding it, it also shows the oxidation state +2 oxidation states other than -l-l and - -2 are unimportant. [Pg.409]

In almost all cases X is unaffected by any changes in the physical and chemical conditions of the radionucHde. However, there are special conditions that can influence X. An example is the decay of Be that occurs by the capture of an atomic electron by the nucleus. Chemical compounds are formed by interactions between the outer electrons of the atoms in the compound, and different compounds have different electron wave functions for these outer electrons. Because Be has only four electrons, the wave functions of the electrons involved in the electron-capture process are influenced by the chemical bonding. The change in the Be decay constant for different compounds has been measured, and the maximum observed change is about 0.2%. [Pg.446]

For holes in the /th shell, the fraction of the holes that result in x-rays when that hole is filled with an outer electron is called the fluorescent yield, CO, for example COj and CO. The quantity CO has been computed theoretically, but the best values come from a simultaneous evaluation of the measured and theoretical values. The value of COj varies smoothly with the atomic number Z, and the fluorescence yields for each L subsheU are smaller than the COj at the same Z. Table 14 gives values of the K and shell binding energies, COj, CO, and relative emission probabiUties of the and Kp x-rays as a function of... [Pg.455]

Silver belongs to Group II (IB) of the Periodic Table. The metal has a outer electronic configuration. Silver has been shown to have three... [Pg.88]

Naiiow-line uv—vis spectia of free atoms, corresponding to transitions ia the outer electron shells, have long been employed for elemental analysis usiag both atomic absorption (AAS) and emission (AES) spectroscopy (159,160). Atomic spectroscopy is sensitive but destmctive, requiring vaporization and decomposition of the sample iato its constituent elements. Some of these techniques are compared, together with mass spectrometry, ia Table 4 (161,162). [Pg.317]

Tellurium [13494-80-9] Te, at no. 52, at wt 127.61, is a member of the sixth main group. Group 16 (VIA) of the Periodic Table, located between selenium and polonium. Tellurium is in the fifth row of the Table, between antimony and iodine, and has an outer electron configuration of The four inner... [Pg.383]

Metallic materials consist of one or more metallic phases, depending on their composition, and very small amounts of nonmetallic inclusions. In the metallic state, atoms donate some of their outer electrons to the electron gas that permeates the entire volume of the metal and is responsible for good electrical conductivity (10 S cm ). Pure elements do not react electrochemically as a single component. A mesomeric state can be approximately assumed... [Pg.30]


See other pages where Outer electrons is mentioned: [Pg.20]    [Pg.23]    [Pg.264]    [Pg.287]    [Pg.415]    [Pg.415]    [Pg.306]    [Pg.8]    [Pg.14]    [Pg.41]    [Pg.134]    [Pg.139]    [Pg.393]    [Pg.442]    [Pg.444]    [Pg.222]    [Pg.446]    [Pg.447]    [Pg.101]    [Pg.326]    [Pg.316]    [Pg.133]    [Pg.419]    [Pg.66]    [Pg.137]    [Pg.265]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



© 2024 chempedia.info