Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethane conventional

Glassy, or vitreous, carbon is a black, shiny, dense, brittle material with a vitreous or glasslike appearance (10,11). It is produced by the controUed pyrolysis of thermosetting resins phenol—formaldehyde and polyurethanes are among the most common precursors. Unlike conventional artificial graphites, glassy carbon has no filler material. The Hquid resin itself becomes the binder. [Pg.527]

Multiblock Copolymers. Replacement of conventional vulcanized mbber is the main appHcation for the polar polyurethane, polyester, and polyamide block copolymers. Like styrenic block copolymers, they can be molded or extmded using equipment designed for processing thermoplastics. Melt temperatures during processing are between 175 and 225°C, and predrying is requited scrap is reusable. They are mostiy used as essentially pure materials, although some work on blends with various thermoplastics such as plasticized and unplasticized PVC and also ABS and polycarbonate (14,18,67—69) has been reported. Plasticizers intended for use with PVC have also been blended with polyester block copolymers (67). [Pg.19]

Some typical properties of a Vulkollan-type polyurethane cast rubber and a black-reinforced polyurethane rubber processed by conventional techniques are compared with black-reinforced natural and nitrile rubbers in Table 27.2 ... [Pg.788]

The conventional polyisocyanurate may be prepared with a two-component system using standard polyurethane foaming equipment. It is usual to blend isocyanate and fluorocarbon to form one component whilst the activator or activator mixture form the second component. [Pg.807]

The large volume applieations for moisture-euring polyurethanes are diseussed briefly in the applieations seetion below. These adhesive offer superior low temperature, high temperature, and speeifie adhesion performanee in comparison to conventional hot melts. These attributes have allowed them to excel in various product assembly applications, including structures such as windows, doors, furniture, and automotive headlamps and trim. Newer applications include bookbinding, fabric laminating, and assembly of athletic shoes. [Pg.735]

At present there are five types of thermoplastic rubber (TPR). Three of these, the polyurethane, the styrenic and the polyester are termed segmented block copolymers in that they consist of thermoplastic molecules grafted to the rubbery molecules. At room temperature it is the thermoplastic molecules which clump together to anchor the rubbery molecules. When heat is applied the thermoplastic molecules are capable of movement so that the material may be shaped using conventional thermoplastic moulding equipment. [Pg.10]

Gas-filled plastics are polymer materials — disperse systems of the solid-gas type. They are usually divided into foam plastics (which contain mostly closed pores and cells) and porous plastics (which contain mostly open communicating pores). Depending on elasticity, gas-filled plastics are conventionally classified into rigid, semi-rigid, and elastic, categories. In principle, they can be synthesized on the basis of any polymer the most widely used materials are polystyrene, polyvinyl chloride, polyurethanes, polyethylene, polyepoxides, phenol- and carbamideformaldehyde resins, and, of course, certain organosilicon polymers. [Pg.100]

Conventional machining operations are used preferably from the same plastic to be used in the product (Chapter 8, SECONDARY EQUIPMENT). Different casting techniques are used that provide low cost even though they are usually labor intensive. The casting of unfilled or filled/reinforced plastic used include TS polyurethane, epoxy, structural foam, and RTV silicone. Also used are die cast metals. [Pg.178]

Most polyurethane formulations are two-component systems, meaning they are made from two basic constituents which are mixed together and react to form the final polymer. The two components are an isocyanate (or isocyanate blend) and a polyol (or polyol blend). The isocyanate is often referred to as the A side and the polyol the B side , although some use the opposite convention. [Pg.238]

Siloxane-urethane segmented copolymers, which have very good mechanical, fatigue and surface properties 370,377 or their blends with conventional polyurethane-(ureas) have been successfully used in the production of blood pumps, intra-aortic balloons and artificial hearts 200,332,370,376,377). [Pg.72]

The antioxidative activities of polymeric antioxidants prepared from Verona oil and the conventional phenolic antioxidant 3-(3,5-di-terf-butyl-4-hydroxyphenyl)propionic acid (DTBH), chemically grafted to polystyrene and polyurethanes, is similar and in some cases even better than that of the corresponding low-MW phenolic antioxidants [81]. [Pg.480]

Side-chain photochlorination of toluene isocyanates yields important industrial intermediates for polyurethane synthesis, one of the most important classes of polymers [6]. The motivation for micro-channel processing stems mainly from enhancing the performance of the photo process. Illuminated thin liquid layers should have much higher photon efficiency (quantum yield) than given for conventional processing. In turn, this may lead to the use of low-intensity light sources and considerably decrease the energy consumption for a photolytic process [6] (see also [21]). [Pg.612]

Various additives in PE (Santonox, Nonox DPPD, Neozone A, Ionol and Agerite White) were determined by conventional TLC [507]. Other additives in PE, studied by means of TLC, were Tinuvin P 120/326/327/770, Cyasorb UV531, Anti UV P (2-hydroxy-4-n-octyloxybenzophenone), Irganox 1076, Sanduvor EPU, AO-4 and Dastib 242/263 [508], TLC has also been used in the analysis of additives in polyurethanes [509,510] as well as of slip additives (ethoxylated amines and amides) in HDPE extracts... [Pg.230]

When a thermoplastic polyurethane elastomer is heated above the melting point of its hard blocks, the chains can flow and the polymer can be molded to a new shape. When the polymer cools, new hard blocks form, recreating the physical crosslinks. We take advantage of these properties to mold elastomeric items that do not need to be cured like conventional rubbers. Scrap moldings, sprues, etc. can be recycled directly back to the extruder, which increases the efficiency of this process. In contrast, chemically crosslinked elastomers, which are thermosetting polymers, cannot be reprocessed after they have been cured. [Pg.394]

Thermoplastic polyurethanes do not require compounding as do the conventional rubbers, and exhibit the same general properties as the cast and millable types. [Pg.117]

The agents in this class are bicyclophosphates and bicyclothiophosphates. This class of agents is not specifically listed in the Chemical Weapons Convention nor is it covered by the language of the general definitions in the Schedules. Some of these chemicals have been used as fire retardants, oil lubricants, and for medicinal research. They also occur as breakdown products in some synthetic turbine engine lubricants and some rigid polyurethane foams. [Pg.221]

In polymer applications derivatives of oils and fats, such as epoxides, polyols and dimerizations products based on unsaturated fatty acids, are used as plastic additives or components for composites or polymers like polyamides and polyurethanes. In the lubricant sector oleochemically-based fatty acid esters have proved to be powerful alternatives to conventional mineral oil products. For home and personal care applications a wide range of products, such as surfactants, emulsifiers, emollients and waxes, based on vegetable oil derivatives has provided extraordinary performance benefits to the end-customer. Selected products, such as the anionic surfactant fatty alcohol sulfate have been investigated thoroughly with regard to their environmental impact compared with petrochemical based products by life-cycle analysis. Other product examples include carbohydrate-based surfactants as well as oleochemical based emulsifiers, waxes and emollients. [Pg.75]


See other pages where Polyurethane conventional is mentioned: [Pg.266]    [Pg.266]    [Pg.406]    [Pg.407]    [Pg.416]    [Pg.418]    [Pg.145]    [Pg.368]    [Pg.260]    [Pg.434]    [Pg.95]    [Pg.259]    [Pg.20]    [Pg.788]    [Pg.880]    [Pg.428]    [Pg.938]    [Pg.377]    [Pg.26]    [Pg.201]    [Pg.251]    [Pg.32]    [Pg.40]    [Pg.63]    [Pg.65]    [Pg.68]    [Pg.77]    [Pg.168]    [Pg.565]    [Pg.91]    [Pg.143]    [Pg.650]    [Pg.302]    [Pg.27]    [Pg.274]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



© 2024 chempedia.info