Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene suspensions

The free-radical kinetics described in Chapter 6 hold for homogeneous systems. They will prevail in well-stirred bulk or solution polymerizations or in suspension polymerizations if the polymer is soluble in its monomer. Polystyrene suspension polymerization is an important commercial example of this reaction type. Suspension polymerizations of vinyl ehloride and of acrylonitrile are described by somewhat different kinetic schemes because the polymers precipitate in these cases. Emulsion polymerizations aie controlled by still different reaetion parameters because the growing macroradicals are isolated in small volume elements and because the free radieals which initiate the polymerization process are generated in the aqueous phase. The emulsion process is now used to make large tonnages of styrene-butadiene rubber (SBR), latex paints and adhesives, PVC paste polymers, and other produets. [Pg.281]

The reaction engineering aspects of these polymerizations are similar. Good heat transfer to a comparatively inviscid phase makes them suitable for vinyl addition polymerizations. Free-radical catalysis is mostly used, but cationic catalysis is used for nonaqueous dispersion polymerization (e.g., of isobutene). High conversions are generally possible, and the resulting polymer, either as a latex or as beads is directly suitable for some applications (e.g., paints, gel permeation chromatography beads, expanded polystyrene). Suspension polymerizations are run in the batch model. Continuous emulsion polymerization is common. [Pg.507]

AV Delgado. F GonzaJez-Caballero. MA Cabrerizo. I Alados. The primary elec-Ifoviscous effect in monodisperse polystyrene suspensions. Acta Polymerica 38 66-70, 1987. [Pg.460]

Carrique, F., Zurita, L., and Delgado, A.V., Some experimental and theoretical data on the dielectric relaxation in dilute polystyrene suspensions, Acta Polymerica, 45, 115, 1994. [Pg.75]

An important step in tire progress of colloid science was tire development of monodisperse polymer latex suspensions in tire 1950s. These are prepared by emulsion polymerization, which is nowadays also carried out industrially on a large scale for many different polymers. Perhaps tire best-studied colloidal model system is tliat of polystyrene (PS) latex [9]. This is prepared with a hydrophilic group (such as sulphate) at tire end of each molecule. In water tliis produces well defined spheres witli a number of end groups at tire surface, which (partly) ionize to... [Pg.2669]

Styrene is a colorless Hquid with an aromatic odor. Important physical properties of styrene are shown in Table 1 (1). Styrene is infinitely soluble in acetone, carbon tetrachloride, benzene, ether, / -heptane, and ethanol. Nearly all of the commercial styrene is consumed in polymerization and copolymerization processes. Common methods in plastics technology such as mass, suspension, solution, and emulsion polymerization can be used to manufacture polystyrene and styrene copolymers with different physical characteristics, but processes relating to the first two methods account for most of the styrene polymers currendy (ca 1996) being manufactured (2—8). Polymerization generally takes place by free-radical reactions initiated thermally or catalyticaHy. Polymerization occurs slowly even at ambient temperatures. It can be retarded by inhibitors. [Pg.476]

Polystyrene. Polystyrene [9003-53-6] is a thermoplastic prepared by the polymerization of styrene, primarily the suspension or bulk processes. Polystyrene is a linear polymer that is atactic, amorphous, inert to acids and alkahes, but attacked by aromatic solvents and chlorinated hydrocarbons such as dry cleaning fluids. It is clear but yellows and crazes on outdoor exposure when attacked by uv light. It is britde and does not accept plasticizers, though mbber can be compounded with it to raise the impact strength, ie, high impact polystyrene (HIPS). Its principal use in building products is as a foamed plastic (see Eoamed plastics). The foams are used for interior trim, door and window frames, cabinetry, and, in the low density expanded form, for insulation (see Styrene plastics). [Pg.327]

FIG. 23-23 Batch and continuous polymerizations, (a) Polyethylene in a tiihiilar flow reactor, up to 2 km long hy 6,4 cm ID, (h) Batch process for polystyrene, (c) Batch-continuous process for polystyrene, (d) Suspension (head) process for polyvinylchloride, (e) Emulsion process for polyvinylchloride, (Ray and Laurence, in Lapidus and Amundson, eds, Chemical Reactor Theory Review, Frentice-Hall, 1977. )... [Pg.2101]

The retentivity relative to solid particles (e.g., spherical particles of polystyrene of definite size) is found from experiments determining the amount of these particles in the suspension to be filtered before and after the filter media. The retentivity K is determined as follows where g, g" =amounts of solid particles in liquid sample before and after the medium, respectively. [Pg.150]

Beaded polymeric support, whether polystyrene-divinylbenzene, polymethacrylate, or polyvinyl alcohol, is conventionally produced by different variations of a two-phase suspension polymerization process, in which liquid microdroplets are converted to the corresponding solid microbeads (1). [Pg.4]

Synthetic organic polymers, which are used as polymeric supports for chromatography, as catalysts, as solid-phase supports for peptide and oligonucleotide synthesis, and for diagnosis, are based mainly on polystyrene, polystyrene-divinylbenzene, polyacrylamide, polymethacrylates, and polyvinyl alcohols. A conventional suspension of polymerization is usually used to produce these organic polymeric supports, especially in large-scale industrial production. [Pg.7]

A macroporous polystyrene-divinylbenzene copolymer is produced by a suspension polymerization of a mixture of monomers in the presence of water as a precipitant. This is substantially immiscible with the monomer mixture but is solubilized with a monomer mixture by micelle-forming mechanisms in the presence of the surfactant sodium bis(2-ethylhexylsulfosuccinate) (22). The porosity of percentage void volume of macroporous resin particles is related to percentage weight of the composite (50% precipitant, 50% solvent) in the monomer mixture. [Pg.8]

A porous polystyrene-divinylbenzene gel is produced by suspension polymerization in an aqueous system with incorporation of more than 5 mol% initiator to a total amount of styrene and divinylbenzene with an inert organic solvent as diluent and porogen (24). [Pg.8]

A novel cross-linked polystyrene-divinylbenzene copolymer has been produced from suspension polymerization with toluene as a diluent, having an average particle size of 2 to 50 /rm, with an exclusive molecular weight for the polystyrene standard from about 500 to 20,000 in gel-permeation chromatography. A process for preparing the PS-DVB copolymer by suspension polymerization in the presence of at least one free-radical polymerization initiator, such as 2,2 -azo-bis (2,4-dimethylvaleronitrile) with a half-life of about 2 to 60 min at 70°C, has been disclosed (78). [Pg.22]

How does yield stress depend on the size of particles We have mentioned above that increasing the specific surface, i.e. decreasing an average size of particles of one type, causes an increase in yield stress. This fact was observed in many works (for example [14-16]). Clear model experiments the purpose of which was to reveal the role of a particle s size were carried out in work [8], By an example of suspensions of spherical particles in polystyrene melt it was shown that yield stress of equiconcentrated dispersions may change by a hundred of times according to the diameter d of non-... [Pg.80]

The approximately round shape and small size of the suspension beads is useful for some applications such as expandable polystyrene or as an intermediate for further compounding with pigments, other polystyrene beads, etc. Being round, however, they tend to roll, not only causing a safety hazard when spilled on floors but more importantly causing difficulties in some fabricating extruders and molding machines. Except for expandable polystyrene, beads are seldom sold as such but are extruded into pellets. [Pg.87]

Suspension Polymerization. Water is the suspending phase. Inorganic salts and vigorous agitation prevent coalescence and agglomeration. The reaction mode is batch. The largest use of suspension polymerization is for the manufacture of expandable polystyrene beads. [Pg.503]

Hollow and porous polymer capsules of micrometer size have been fabricated by using emulsion polymerization or through interfacial polymerization strategies [79,83-84, 88-90], Micron-size, hollow cross-linked polymer capsules were prepared by suspension polymerization of emulsion droplets with polystyrene dissolved in an aqueous solution of poly(vinyl alcohol) [88], while latex capsules with a multihollow structure were processed by seeded emulsion polymerization [89], Ceramic hollow capsules have also been prepared by emulsion/phase-separation procedures [14,91-96] For example, hollow silica capsules with diameters of 1-100 micrometers were obtained by interfacial reactions conducted in oil/water emulsions [91],... [Pg.515]

Scientists also have learned how to mimic the surface of a butterfly wing. Polystyrene beads and smaller silica nanoparticles are suspended in water and mixed thoroughly using ultrasound. When a glass slide is dipped into the suspension and slowly withdrawn, a thin film forms on the glass surface. This film is a regular array of beads encased in a matrix of nanoparticles. Heating the film destroys the polystyrene beads but leaves the silica web intact. The result is a silica inverse opal film. [Pg.749]

Heller and Tabibian (13) noted that errors, due to laterally scattered light and the corona effect, as large as to cause a 30 reduction in measured turbidity, may result if instruments which are perfectly suitable for ordinary absorption measurements are used for turbidity measurements without proper modifications. To evaluate the performance of our turbidity detector, particle suspensions of various concentrations of several polystyrene latex standards were prepared. Their extinction coefficients were measured using both a bench-top UV spectrophotometer (Beckman, Model 25) and the online detector (Pharmacia). [Pg.52]

Recently it has been reported that even colloidal particle suspensions themselves, without added polymers, can form dissipative structures. Periodic stripes of colloidal particles (monodisperse particles of diameter 30 nm and 100 nm, respectively) and polystyrene particles (monodisperse diameters from 0.5 to 3 pm) can be formed from dilute aqueous suspensions. The stripes are parallel to the receding direction of the edge of the suspension droplet and thus indicate that a fingering instability... [Pg.193]

Surfactants and Colloids in Supercritical Fluids Because very few nonvolatile molecules are soluble in CO2, many types of hydrophilic or lipophilic species may be dispersed in the form of polymer latexes (e.g., polystyrene), microemulsions, macroemulsions, and inorganic suspensions of metals and metal oxides (Shah et al., op. cit.). The environmentally benign, nontoxic, and nonflammable fluids water and CO2 are the two most abundant and inexpensive solvents on earth. Fluorocarbon and hydrocarbon-based surfactants have been used to form reverse micelles, water-in-C02... [Pg.15]

Sodium polystyrene sulfonate 15-60 g in 20% sorbitol suspension enterally. As an enema, prepare 50 g in 70% sorbitol plus 100 mL tap water. This solution should be retained for 30-60 min... [Pg.166]

Similarly, toluene suspensions of the polystyrene housing of TV sets were examined by means of TPPy-FTMS (300-1200 K) [224], Diphenylether (DPE) was evidenced by peaks at m/z 141, 142 and 170 and decabromobiphenyl (DBBP) by m/z 943 and 864. Decabromodiphenyl ether (DBDPE) was recognised by thermal degradation products around m/z 800... [Pg.397]

C10Hlo)o.01 C8H8 0.57 (c8H7Br)o.42 (Bromo)polystyrene (20.00 g, 60 meq), originally prepared from commercial 1% crosslinked polystyrene resin (37), was suspended in 500 ml dry benzene under nitrogen. Into this pale orange suspension was injected 2.2 M nBuLi/hexane (60 ml,... [Pg.31]


See other pages where Polystyrene suspensions is mentioned: [Pg.285]    [Pg.576]    [Pg.673]    [Pg.204]    [Pg.285]    [Pg.576]    [Pg.673]    [Pg.204]    [Pg.217]    [Pg.242]    [Pg.405]    [Pg.419]    [Pg.419]    [Pg.419]    [Pg.490]    [Pg.185]    [Pg.558]    [Pg.429]    [Pg.282]    [Pg.7]    [Pg.1398]    [Pg.335]    [Pg.699]    [Pg.76]    [Pg.493]    [Pg.543]    [Pg.9]    [Pg.31]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



© 2024 chempedia.info