Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radicals, catalysis

The decomposition of hydroperoxides can also be induced by raising the temperature and is promoted by metal catalysis. Free radicals formed during the reaction (4) and (5) can also take part in radical induced decomposition of hydroperoxides... [Pg.176]

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

The scope of oxidation chemistry is enormous and embraces a wide range of reactions and processes. This article provides a brief introduction to the homogeneous free-radical oxidations of paraffinic and alkylaromatic hydrocarbons. Heterogeneous catalysis, biochemical and hiomimetic oxidations, oxidations of unsaturates, anodic oxidations, etc, even if used to illustrate specific points, are arbitrarily outside the purview of this article. There are, even so, many unifying features among these areas. [Pg.334]

Hydrogen peroxide may react directiy or after it has first ionized or dissociated into free radicals. Often, the reaction mechanism is extremely complex and may involve catalysis or be dependent on the environment. Enhancement of the relatively mild oxidizing action of hydrogen peroxide is accompHshed in the presence of certain metal catalysts (4). The redox system Fe(II)—Fe(III) is the most widely used catalyst, which, in combination with hydrogen peroxide, is known as Fenton s reagent (5). [Pg.471]

The free radicals initially formed are neutralized by the quinone stabilizers, temporarily delaying the cross-linking reaction between the styrene and the fumarate sites in the polyester polymer. This temporary induction period between catalysis and the change to a semisoHd gelatinous mass is referred to as gelation time and can be controUed precisely between 1—60 min by varying stabilizer and catalyst levels. [Pg.317]

Metal Catalysis. Aqueous solutions of amine oxides are unstable in the presence of mild steel and thermal decomposition to secondary amines and aldehydes under acidic conditions occurs (24,25). The reaction proceeds by a free-radical mechanism (26). The decomposition is also cataly2ed by V(III) and Cu(I). [Pg.190]

Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)... Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)...
Wawzonek et al. first investigated the mechanism of the cyclization of A-haloamines and correctly proposed the free radical chain reaction pathway that was substantiated by experimental data. "" Subsequently, Corey and Hertler examined the stereochemistry, hydrogen isotope effect, initiation, catalysis, intermediates, and selectivity of hydrogen transfer. Their results pointed conclusively to a free radical chain mechanism involving intramolecular hydrogen transfer as one of the propagation steps. Accordingly, the... [Pg.89]

Another example of resort to heteroatoms to obtain both oral potency and a split between androgenic and anabolic activities Ls tiomestrone (99). Trienone, 98, prepared in much the same way as 23, undergoes sequential 1,6 and 1,4 conjugate addition of thioacetic acid under either irradiation or free radical catalysis to afford the compound containing two sulfur atoms. [Pg.175]

Redox catalysis appears also to be an elegant way to conduct alkylations. In this case the RX compound has to produce a free radical R which is sufficiently reactive toward the electron carrier A or its reduced form. Generally the mechanism, developed mainly for the case of alkyl halides, may be summarized as in reactions 25, 29-36. [Pg.1018]

The selection of the thirty procedures clearly reflects the current interest of synthetic organic chemistry. Thus seven of them illustrate uses of T1(I), T1 (III), Cu(I), and Li(I), and three examples elaborate on the process now termed phase-transfer catalysis. In addition, newly developed methods involving fragmentation, sulfide contraction, and synthetically useful free radical cyclization arc covered in five procedures. Inclusion of preparations and uses of five theoretically interesting compounds demonstrates the rapid expansion of this particular area in recent years and will render these compounds more readily and consistently available. [Pg.156]

There are two important ways of adding alkanes to alkenes—the thermal method and the acid-catalysis method." Both give chiefly mixtures, and neither is useful for the preparation of relatively pure compounds in reasonable yields. However, both are useful industrially. In the thermal method, the reactants are heated to high temperatures ( 500°C) at high pressures (150-300 atm) without a catalyst. As an example, propane and ethylene gave 55.5% isopentane, 7.3% hexanes, 10.1% heptanes, and 7.4% alkenes. The mechanism is undoubtedly of a free-radical type and can be illustrated by one possible sequence in the reaction between propane and ethylene ... [Pg.1017]

The above discussion has been based on conventional free-radical catalysis. There has been substantial research on long-lived free radicals that can give a living polymer without the severe cleanliness requirements of anionic polymerizations. Unfortunately, it has not yet had commercial success. [Pg.486]

Vinyl monomers are often copolymerized, usually with free-radical or coordination metal catalysis, but occasionally by other mechanisms. Random copolymers are important items of commerce. The two monomers are present together in the reaction mixture and copolymerize to give more-or-less random arrangements of the monomers along the pol5aner chain. [Pg.487]

Investigations of the cobalt-carbon bond energies in organometallic cobalt porphyrins continue to attract interest, originally because of their similarity to coenzyme B 2, and more recently because of their role in the catalysis of free radical... [Pg.283]

Cobalt porphyrin complexes are involved in the chain transfer catalysis of the free-radical polymerization of acrylates. Chain transfer catalysis occurs by abstraction of a hydrogen atom from a grow ing polymer radical, in this case by Co(Por) to form Co(Por)H. The hydrogen atom is then transferred to a new monomer, which then initiates a new propagating polymer chain. The reaction steps are shown in Eqs. 12 (where R is the polymer chain. X is CN), (13), and (14)." ... [Pg.290]

The ratio ARH/ARj (monoalkylation/dialkylation) should depend principally on the electrophilic capability of RX. Thus it has been shown that in the case of t-butyl halides (due to the chemical and electrochemical stability of t-butyl free radical) the yield of mono alkylation is often good. Naturally, aryl sulphones may also be employed in the role of RX-type compounds. Indeed, the t-butylation of pyrene can be performed when reduced cathodically in the presence of CgHjSOjBu-t. Other alkylation reactions are also possible with sulphones possessing an ArS02 moiety bound to a tertiary carbon. In contrast, coupling reactions via redox catalysis do not occur in a good yield with primary and secondary sulphones. This is probably due to the disappearance of the mediator anion radical due to proton transfer from the acidic sulphone. [Pg.1019]

Catalysis of Free Radical Reactions by Colloidal Metals.117... [Pg.113]

The catalysis of reactions of short-lived species, such as free radicals generated by radiation, became of interest in more recent times. When the species whose reactions... [Pg.116]

The second part of the book deals with the use of above method in physical and chemical studies. In addition to illustration load, this part of the book has a separate scientific value. The matter is that as examples the book provides a detailed description of the studies of sudi highly interesting processes as adsorption, catalysis, pyrolysis, photolysis, radiolysis, spill-over effect as well as gives an insight to such problems as behavior of free radicals at phase interface, interaction of electron-excited particles with the surface of solid body, effect of restructuring of the surface of adsorbent on development of different heterogeneous processes. [Pg.1]


See other pages where Free radicals, catalysis is mentioned: [Pg.263]    [Pg.202]    [Pg.86]    [Pg.380]    [Pg.170]    [Pg.574]    [Pg.11]    [Pg.84]    [Pg.1019]    [Pg.157]    [Pg.446]    [Pg.567]    [Pg.992]    [Pg.482]    [Pg.494]    [Pg.502]    [Pg.99]    [Pg.317]    [Pg.118]    [Pg.25]    [Pg.480]    [Pg.1217]    [Pg.66]    [Pg.82]    [Pg.139]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Radical catalysis

© 2024 chempedia.info