Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbidity detector

Very recently Husain et al.(12) obtained an analytical solution to the integral equation describing peak broadening for a turbidity detector in the Mie scattering regime. [Pg.48]

Heller and Tabibian (13) noted that errors, due to laterally scattered light and the corona effect, as large as to cause a 30 reduction in measured turbidity, may result if instruments which are perfectly suitable for ordinary absorption measurements are used for turbidity measurements without proper modifications. To evaluate the performance of our turbidity detector, particle suspensions of various concentrations of several polystyrene latex standards were prepared. Their extinction coefficients were measured using both a bench-top UV spectrophotometer (Beckman, Model 25) and the online detector (Pharmacia). [Pg.52]

Theory. We will outline theory developed earlier (11,12) for converting the detector response F(v) from a turbidity detector into particle size information. F(v) is related to the dispersion-corrected chromatogram W(y) by the integral equation... [Pg.65]

Figure 14 Particle size distribution of a ten-component mixture of narrow polystyrene dispersions. Left intensity measured as function of t with a turbidity detector. Right integral and differential particle size distribution. Reproduced from Machtle [84] by permission of The Royal Society of Chemistry. [Pg.238]

Why the emphasis on freedom An example will help. I was asked to measure the sulfuric acid content in a gasoline component. My first idea was to separate the acid from the stream and measure the amount of acid and relate that back to the original concentration. My separator worked well at high levels but when I got down to the level of interest, below 100 ppm, the separator did not work at all. However, when we got to that level, the solution became turbid. The solution was to install an on-line turbidity detector instead of building a complex separator and analysis device, to measure acid in the 10-100-ppm level. This worked, but certainly was not the first approach. [Pg.11]

Automated controls for flocciJating reagents can use a feedforward mode based on feed turbidity and feed volumetric rate, or a feed-back mode incorporating a streaming current detector on the flocculated feed. Attempts to control coagulant addition on the basis of overflow turbidity generally have been less successful. Control for pH has been accomplished by feed-forward modes on the feed pH and by feed-back modes on the basis of clarifier feedwell or external reaction tank pH. Control loops based on measurement of feedwell pH are useful for control in apphcations in which flocculated sohds are internaUy recirculated within the clarifier feedwell. [Pg.1689]

Turbidity Gauges These operate with visible light beams and detectors. They are used to monitor feed and effluent turbidity. [Pg.1689]

Dichlorodibenzo- -dioxin. 2-Bromo-4-chlorophenol (31 grams, 0.15 mole) and solid potassium hydroxide (8.4 grams, 0.13 mole) were dissolved in methanol and evaporated to dryness under reduced pressure. The residue was mixed with 50 ml of bEEE, 0.5 ml of ethylene diacetate, and 200 mg of copper catalyst. The turbid mixture was stirred and heated at 200°C for 15 hours. Cooling produced a thick slurry which was transferred into the 500-ml reservoir of a liquid chromatographic column (1.5 X 25 cm) packed with acetate ion exchange resin (Bio-Rad, AG1-X2, 200-400 mesh). The product was eluted from the column with 3 liters of chloroform. After evaporation, the residue was heated at 170°C/2 mm for 14 hours in a 300-cc Nestor-Faust sublimer. The identity of the sublimed product (14 grams, 74% yield) was confirmed by mass spectrometry and x-ray diffraction. Product purity was estimated at 99- -% by GLC (electron capture detector). [Pg.132]

In order to calculate particle size distributions in the adsorption regime and also to determine the relative effects of wavelength on the extinction cross section and imaginary refractive index of the particles, a series of turbidity meas irements were made on the polystyrene standards using a variable wavelength UV detector. More detailed discussions are presented elsewhere (23) > shown here is a brief summary of some of the major results and conclusions. [Pg.16]

Goodwin et al. [82] determined trace sulphides in turbid waters by a gas dialysis-ion chromatographic method. The sulphide is converted to hydrogen sulphide which is then isolated from the sample matrix by diffusion through a gas dialysis membrane and trapped in a dilute sodium hydroxide solution. A 200pL portion of this solution is injected into an ion chromatograph for determination with an electrochemical detector. Detection limits were >1.9ng/mL... [Pg.81]

A dry packed column with porous material was used for the characterization according to size of the PVAc latex samples. The packing employed was CPG (Controlled Pore Glass), 2000 A, 200-400 mesh size. Deionized water with 0.8 gr/lit Aerosol O.T. (dioctyl sodium sulphosuccinate), 0.8 gr/lit sodium nitrate and 0.4 gr/lit sodium azide served as the carrier fluid under a constant flowrate. The sample loop volume was 10 pC A Beckman UV detector operating at 254 nm was connected at the column outlet to monitor particle size. A particle size-mean retention volume calibration curve was constructed from commercially available polystyrene standards. For reasons of comparison, the samples previously characterized by turbidity spectra were also characterized by SEC. A number of injections were repeated to check for the reproducibility of the method. [Pg.252]

Chemical addition is typically used with clarification to improve both the utility and performance of the unit operation. Coagulants and flocculants are generally used to improve the ability to settle particles in the clarifier. Jar tests are used to determine the proper dosage of chemicals and streaming current detectors or turbidity monitors are used to monitor performance and control chemical dosage. Chlorine is often used to improve the removal of organics and color in the clarifier. Chlorine also provides disinfection of the make-up water to prevent the clarifiers from going septic. [Pg.149]


See other pages where Turbidity detector is mentioned: [Pg.48]    [Pg.225]    [Pg.251]    [Pg.418]    [Pg.418]    [Pg.48]    [Pg.225]    [Pg.251]    [Pg.418]    [Pg.418]    [Pg.394]    [Pg.203]    [Pg.62]    [Pg.265]    [Pg.266]    [Pg.101]    [Pg.226]    [Pg.132]    [Pg.106]    [Pg.238]    [Pg.239]    [Pg.139]    [Pg.266]    [Pg.55]    [Pg.1633]    [Pg.279]    [Pg.57]    [Pg.59]    [Pg.62]    [Pg.178]    [Pg.103]    [Pg.133]    [Pg.135]    [Pg.320]    [Pg.270]    [Pg.112]    [Pg.109]    [Pg.1850]    [Pg.322]   
See also in sourсe #XX -- [ Pg.65 ]

See also in sourсe #XX -- [ Pg.253 , Pg.259 , Pg.260 , Pg.264 ]




SEARCH



Nephelometric turbidity detector

Turbidity

© 2024 chempedia.info