Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene standard

MFI = melt flow index IV = intrinsic viscosity in CH2CI2 at 25°C From gel-permeation chromatography using polystyrene standards. [Pg.280]

As measured by gpc in DMAC—LiCl (26) based on polystyrene standards. [Pg.313]

A novel cross-linked polystyrene-divinylbenzene copolymer has been produced from suspension polymerization with toluene as a diluent, having an average particle size of 2 to 50 /rm, with an exclusive molecular weight for the polystyrene standard from about 500 to 20,000 in gel-permeation chromatography. A process for preparing the PS-DVB copolymer by suspension polymerization in the presence of at least one free-radical polymerization initiator, such as 2,2 -azo-bis (2,4-dimethylvaleronitrile) with a half-life of about 2 to 60 min at 70°C, has been disclosed (78). [Pg.22]

H type resins are available in different pore sizes. Examples of calibration curves for polystyrene standards are shown in Figs. 4.38 and 4.39. Other series of H type columns have similar calibration curves. Exclusion limits are listed in Tables 4.12-4.16. [Pg.138]

FIGURE 4.38 Calibration curves for TSK-GEL Hxl columns with polyst/rene standards. Column TSK-GEL Hxl series, two 7.8 mm x 30 cm columns in series. Sample Polystyrene standards. Elution Tetrahydrofuran. Flow rate 1.0 ml/min. Detection Rl. [Pg.139]

Small particle size resins provide higher resolution, as demonstrated in Fig. 4.41. Low molecular weight polystyrene standards are better separated on a GIOOOHxl column packed with 5 /u,m resin than a GlOOOHg column packed with 10 /Ltm resin when compared in the same analysis time. Therefore, smaller particle size resins generally attain a better required resolution in a shorter time. In this context, SuperH columns are best, and Hhr and Hxl columns are second best. Most analyses have been carried out on these three series of H type columns. However, the performance of columns packed with smaller particle size resins is susceptible to some experimental conditions such as the sample concentration of solution, injection volume, and detector cell volume. They must be kept as low as possible to obtain the maximum resolution. Chain scissions of polymer molecules are also easier to occur in columns packed with smaller particle size resins. The flow rate should be kept low in order to prevent this problem, particularly in the analyses of high molecular weight polymers. [Pg.143]

FIGURE 6.1 Calibration curves of Shodex GPC KF-BOO series. Column Shodex GPC KF-800 series 8 mm i.d. X 300 mm. Eluent THF. Sample Polystyrene standards. [Pg.173]

FIGURE 11.4 Comparison of chromatograms obtained on conventional (A) and solvent-efficient Styragel columns (B). In each case the column bank was a bank of Styragel HR 0.5, HR I, HR 2, and HR 3 columns at 3S°C with THF as the solvent. The sample is a mixture of polystyrene standards. With proper care and optimized instrumentation, good resolution can be obtained with solvent-efficient Styragel columns. (Courtesy of Waters Corp.)... [Pg.334]

Figures 13.8 and 13.9 show the separation of polystyrene standards using a typical mixed-bed column and its calibration plot, respectively. The major advantages of using a large i.d. 10-mm column are low hack pressure and relatively short run times. As seen in Fig. 13.8,10 standards from toluene thru 8.4 X 10 MW can be resolved in a mere 21 min. Because of the large 10-mm i.d. columns, 1.5-ml/min flow rates give a linear velocity equivalent to that of only 0.9 ml/min using a 7.6-mm i.d. column. Also, the gel volume contained in one 10 mm i.d. X 500 mm column is 39.3 ml, whereas a 7.6 mm i.d. X 300 mm column contains only 13.6 ml of gel volume. This bulk volume factor, combined with the large pore volumes of gels, obtains essentially the same resolution as that obtained on three standard 7.6 X 300-mm columns in series, but in about one-half the usual time required using the smaller columns. Figures 13.8 and 13.9 show the separation of polystyrene standards using a typical mixed-bed column and its calibration plot, respectively. The major advantages of using a large i.d. 10-mm column are low hack pressure and relatively short run times. As seen in Fig. 13.8,10 standards from toluene thru 8.4 X 10 MW can be resolved in a mere 21 min. Because of the large 10-mm i.d. columns, 1.5-ml/min flow rates give a linear velocity equivalent to that of only 0.9 ml/min using a 7.6-mm i.d. column. Also, the gel volume contained in one 10 mm i.d. X 500 mm column is 39.3 ml, whereas a 7.6 mm i.d. X 300 mm column contains only 13.6 ml of gel volume. This bulk volume factor, combined with the large pore volumes of gels, obtains essentially the same resolution as that obtained on three standard 7.6 X 300-mm columns in series, but in about one-half the usual time required using the smaller columns.
Figures 13.25-13.28 show the ultrahigh resolution separations in chloroform of polystyrene standards, polytetramethylene glycol, urethanes and isocyanates, and epoxy resins, respectively. Multiple column sets of anywhere from two to six columns in series have been used for well over a year with no apparent loss of efficiency. The 500- and 10 -A gels can easily tolerate 15,000 psi or more. In fact, the limiting factor in the number of columns that can be used in series is generally the pump or injector in the FIPLC system. A pump capable of 10,000 psi operation should allow the use of a column bank of 10-12 50-cm columns with a total plate count of 500,000 or more. Figures 13.25-13.28 show the ultrahigh resolution separations in chloroform of polystyrene standards, polytetramethylene glycol, urethanes and isocyanates, and epoxy resins, respectively. Multiple column sets of anywhere from two to six columns in series have been used for well over a year with no apparent loss of efficiency. The 500- and 10 -A gels can easily tolerate 15,000 psi or more. In fact, the limiting factor in the number of columns that can be used in series is generally the pump or injector in the FIPLC system. A pump capable of 10,000 psi operation should allow the use of a column bank of 10-12 50-cm columns with a total plate count of 500,000 or more.
FIGURE 13.25 Using chloroform as the solvent, a mixture of polystyrene standards were nicely separated on the 3-m set of columns. Run times here were 160 min. Plate count for toluene was calculated at 240,000 plates. The 500 MW Standard is separated nicely into its oligomers. [Pg.383]

As the porosities of PDVB gels increase above 10 A, the pressure limits drop, with 2500 psi being the maximum usable pressure for 10 A, 10 A, and mixed-bed columns. Because the normal operating pressures in most solvents for these columns tend to be in the range of 1000 psi or less for a 10 X 500-mm column, there is seldom an operational problem. Figure 13.8 shows the resolution of a typical mixed-bed column run in chloroform at 1.5 ml min yielding a back pressure of 700 psi and running polystyrene standards. [Pg.384]

The ISO method prescribes polystyrene standards with tetrahydrofuran as the eluent, but this equation can also be used with other narrow distribution standards, provided the same elution solvent and the same standards are used for a comparison. Further, the ISO method requires the result to be greater than 6 for one decade of the molar mass. Because calibration curves are usually not linear, this decade should lie nearly symmetrically around the peak maxima of the samples in question. The required value of 6 is easy to fulfill, as results of 10 or more are usual with modern columns. If so-named linear or mixed... [Pg.436]

In this stage of the investigation, poly(methyl methacrylates) (PMMAs) were selected as the polymeric probes of intermediate polarity. Polymers of medium broad molar mass distribution and of low tacticity (14) were a gift of Dr. W. Wunderlich of Rohm Co., Darmstadt, Germany. Their molar masses ranged from 1.6 X 10" to 6.13 X 10 g-mol. For some comparative tests, narrow polystyrene standards from Pressure Co. (Pittsburgh, PA) were used. [Pg.448]

This simply relates to how linear the relationship between the peak molecular weight of narrow polystyrene standards versus elution volume fits a straight line. This is typically measured with the linear correlation coefficient, r. ... [Pg.584]

Traditionally, column efficiency or plate counts in column chromatography were used to quantify how well a column was performing. This does not tell the entire story for GPC, however, because the ability of a column set to separate peaks is dependent on the molecular weight of the molecules one is trying to separate. We, therefore, chose both column efficiency and a parameter that we simply refer to as D a, where Di is the slope of the relationship between the log of the molecular weight of the narrow molecular weight polystyrene standards and the elution volume, and tris simply the band-broadening parameter (4), i.e., the square root of the peak variance. [Pg.585]

FIGURE 22.3 Experimental points for polystyrene standards in THF and three OTHdC columns (O, 1.342 fjLm, , 0.862 jum and O, 0.630 tm) with theoretical curves according to the modified BG model. (Reprinted with permission from Ref. 7. Copyright 1986 American Chemical Society.)... [Pg.600]

FIGURE 22.7 Elution behavior of polystyrene standards in THE in PCHdC with different packing diameters , 1.40 /tm A, 1.91 m and , 0.87 /tm. Theoretical curves according to Eq. (I), where C = 3.7. (Reprinted from j. Chromatogr., 506,554, Copyright 1990, with permission from Elsevier Science.)... [Pg.604]

The most widely used molecular weight characterization method has been GPC, which separates compounds based on hydrodynamic volume. State-of-the-art GPC instruments are equipped with a concentration detector (e.g., differential refractometer, UV, and/or IR) in combination with viscosity or light scattering. A viscosity detector provides in-line solution viscosity data at each elution volume, which in combination with a concentration measurement can be converted to specific viscosity. Since the polymer concentration at each elution volume is quite dilute, the specific viscosity is considered a reasonable approximation for the dilute solution s intrinsic viscosity. The plot of log[r]]M versus elution volume (where [) ] is the intrinsic viscosity) provides a universal calibration curve from which absolute molecular weights of a variety of polymers can be obtained. Unfortunately, many reported analyses for phenolic oligomers and resins are simply based on polystyrene standards and only provide relative molecular weights instead of absolute numbers. [Pg.385]


See other pages where Polystyrene standard is mentioned: [Pg.354]    [Pg.446]    [Pg.258]    [Pg.143]    [Pg.176]    [Pg.186]    [Pg.188]    [Pg.188]    [Pg.327]    [Pg.357]    [Pg.369]    [Pg.373]    [Pg.373]    [Pg.373]    [Pg.383]    [Pg.394]    [Pg.500]    [Pg.548]    [Pg.584]    [Pg.585]    [Pg.589]    [Pg.589]    [Pg.590]    [Pg.607]    [Pg.665]    [Pg.5]    [Pg.96]    [Pg.97]    [Pg.98]    [Pg.100]    [Pg.118]   
See also in sourсe #XX -- [ Pg.41 , Pg.183 , Pg.185 , Pg.188 ]

See also in sourсe #XX -- [ Pg.283 , Pg.284 ]

See also in sourсe #XX -- [ Pg.18 , Pg.56 , Pg.99 , Pg.151 ]

See also in sourсe #XX -- [ Pg.166 ]

See also in sourсe #XX -- [ Pg.224 , Pg.376 ]

See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Example from polystyrene standard

Molecular weight polystyrene standards

Narrow molecular weight distribution polystyrene standards

Polystyrene as standard

Polystyrene broad standards

Polystyrene broad standards, universal

Polystyrene calibration standard

Polystyrene chromatography standards

Polystyrene latex standards

Polystyrene narrow standards, effect

Polystyrene standards,separation

Polystyrene wavelength standard

Size exclusion data, polystyrene standards

Tetrahydrofuran polystyrene standards

© 2024 chempedia.info