Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene impact resistance

Polystyrene Poly(2,6-dimethyl-l,4- phenyleneoxide) Mutual solution toughens polystyrene Impact-resistant objects, such as appliances... [Pg.146]

The annual production of styrene in the United States is approximately 1 2 X 10 lb with about 65% of this output used to prepare polystyrene plastics and films Styrofoam coffee cups are made from polystyrene Polystyrene can also be produced m a form that IS very strong and impact resistant and is used widely m luggage television and radio cabinets and furniture... [Pg.449]

Styrene—acrylonitrile (SAN) copolymers [9003-54-7] have superior properties to polystyrene in the areas of toughness, rigidity, and chemical and thermal resistance (2), and, consequendy, many commercial appHcations for them have developed. These optically clear materials containing between 15 and 35% AN can be readily processed by extmsion and injection mol ding, but they lack real impact resistance. [Pg.191]

Impact polystyrene (IPS) is one of a class of materials that contains mbber grafted with polystyrene. This composition is usually produced by polymerizing styrene (by mass or solution free-radical polymerization) in the presence of a small amount (ca 5%) of dissolved elastomer. Some of the important producers of impact-resistant polystyrenes are BASE (Polystyrol), Dow (Styron), and Monsanto (Lustrex). The 1988 U.S. production of impact polystyrene was more than 1 million t (92). [Pg.186]

The results of [91] supply ample evidence in support of this qualitative picture. The authors determined the baric viscosity factor b = [0 In j/(0P)-1] T (where t] is viscosity, P is pressure) for impact-resistant polystyrene filled with antimony trioxide. The viscosity piezocoefficient is known to be related to the free volume. A very simple formula for this relationship has been proposed in [92] in this form ... [Pg.10]

If samples are transported frozen, the packaging containers should be made of a hard and impact-resistant material such as polystyrene. Cardboard cartons with insulating material can also be used. [Pg.188]

One of the principal weaknesses of pure polystyrene is its low impact resistance. To counteract this problem, we toughen it with various types of rubber. This is most effective when a portion of the rubber is chemically grafted to the polystyrene. The rubber forms small inclusions within a matrix of polystyrene. The presence of rubber also improves polystyrene s extensibility, ductility, and resistance to environmental stress cracking. [Pg.338]

Rubber toughened polystyrene is widely used in electronic and kitchen appliances. This type of application requires a good balance of stiffness, impact resistance, and ready coloration. Telephones, which are frequently dropped, are an excellent example of the benefits of rubber toughened polystyrene. The high surface gloss that we desire is obtained by minimizing the size of the rubber particles. Larger items, such as canoes, can be thermoformed from extruded sheet. [Pg.340]

To increase heat and impact resistance without affecting other useful qualities, polystyrene is copolymerised with a small amount of P-divinylbenzene p-CH2 = CHCH6H4CH = CH2 when cross-... [Pg.160]

The tendency of polybutadiene to undergo chain transfer reactions can be used for the preparation of impact-resistance polymer where polystyrene has been grafted to polybutadiene as under ... [Pg.226]

One of the most important outcomes of these efforts was impact-resistant polystyrene, which was obtained by modifying the brittle material with rubber. The first products were blends of polystyrene and synthetic rubbers recourse was soon made, however, to a principle that Ostromislensky (29) had suggested as early as 1927 styrene monomer was polymerized in the presence of rubber dissolved in it. [Pg.270]

Union Carbide (34) and in particular Dow adopted the continuous mass polymerization process. Credit goes to Dow (35) for improving the old BASF process in such a way that good quality impact-resistant polystyrenes became accessible. The result was that impact-resistant polystyrene outstripped unmodified crystal polystyrene. Today, some 60% of polystyrene is of the impact-resistant type. The technical improvement involved numerous details it was necessary to learn how to handle highly viscous polymer melts, how to construct reactors for optimum removal of the reaction heat, how to remove residual monomer and solvents, and how to convey and meter melts and mix them with auxiliaries (antioxidants, antistatics, mold-release agents and colorants). All this was necessary to obtain not only an efficiently operating process but also uniform quality products differentiated to meet the requirements of various fields of application. In the meantime this process has attained technical maturity over the years it has been modified a number of times (Shell in 1966 (36), BASF in 1968 (37), Granada Plastics in 1970 (38) and Monsanto in 1975 (39)) but the basic concept has been retained. [Pg.271]

The first move in this direction was to improve the weatherability of impact-resistant polystyrene. Because polybutadiene, the most widely used rubber in impact-resistant polystyrene, is unsaturated, it is sensitive to photooxidation, and impact-resistant polystyrene is therefore not suitable for outdoor applications. A saturated rubber might be able to help here. In the ABS sector this has been successfully tried out with acrylate rubber (77) and EPDM (78, 79), and the latter has also been used in impact-resistant polystyrene (80, 81) This development has elicited satisfactory responses only in certain areas and more work still has to be done. For instance, attempts have been made to improve resistance to weathering by using silicone rubber (82 ). This approach is effective, but economic factors still stand in its way. Further impetus may also be expected from stabilizer research. Hindered secondary amines (83), to which considerable attention has recently been paid, are a first step in this direction. [Pg.278]

Another successful development was based on morphological studies of traditional impact-resistant polystyrenes. Products with unusually big particles and a certain combination of composition and properties are particularly resistant to stress cracking (84). They have achieved considerable success on the... [Pg.278]

The heat distortion temperature of impact-resistant polystyrene may also be improved by polymer blends. Those of impact-resistant polystyrene with poly-2,5-dimethylphenylene-1,4-oxide (PPO) are particularly interesting (90). Polystyrene and PPO are molecularly compatible and mixtures of them have glass transition temperatures which vary virtually linearly with composition. A further advantage of these compositions which should not be under-estimated is their better flame resistance. [Pg.280]

Impact-resistant polystyrene from latex blends. [Pg.282]

Continuous mass process for impact-resistant polystyrene from styrene and SBR (Dow) goes onstream. [Pg.282]

Processing of impact-resistant polystyrene to large injection moldings (weighing up to 10 kg). [Pg.282]

Polyblends of impact-resistant polystyrene and PPO (NORYL, General Electric). ... [Pg.283]

Transparent block copolymers of styrene and butadiene, having polystyrene character (Phillips). Weather-resistant, impact-resistant polystyrene with EPDM rubber (Mitsui Toatsu, Hoechst). [Pg.283]

In the time interval between phase inversion and gelation of the polystyrene continuous phase, the final morphological features such as size average and size distribution of elastomer domains become fixed. Since these morphological changes affect properties such as modulus and impact resistance, the characteristics of the system at and just after phase inversion and before gelation demand the closest scrutiny. The open time interval was found to decrease as the polyester prepolymer content increases, probably because higher polystyrene conversions are required for the system to reach suitable phase inversion conditions. [Pg.414]

Based on castor oil derived elastomers and crosslinked polystyrene, a simultaneous mode of polymerization can be successfully employed to synthesize prototype engineering materials such as tough, impact resistant plastics and reinforced elastomers. [Pg.418]

The SIN s from castor oil and the other oils were tough materials, either reinforced elastomers or impact resistant plastics depending on their composition and whether phase inversion had occurred. Impact strengths in the range of 40-60 J/m were obtained. The glass transitions of the rubber phase of the SIN s tended to be a little higher than those shown in Table IV. The polystyrene phase... [Pg.247]

High-impact grades present better impact resistances even at low temperature, higher flexibility and environmental stress cracking resistance (ESCR). The butadiene-styrene block copolymers are transparent but the alloys made of polystyrene and polybutadiene are not. [Pg.338]

ISO 2897-1 1997 Plastics - Impact-resistant polystyrene (PS-I) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 2897-2 2003 Plastics - Impact-resistant polystyrene (PS-I) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties ISO 14631 1999 Extruded sheets of impact-modified polystyrene (PS-I) - Requirements and test methods... [Pg.351]

Styrolux is an example of a nanostructured polymer which is used in food packaging. It is a polystyrene-polybutadiene block copolymer where polymer chains are build up of alternating polystyrene and polybutadiene blocks. These blocks appear as dark lamellae in the TEM image due to the staining of the polybutadiene with OSO4. This structured nanoscale architecture of the pol5mier, which can be controlled during manufacture, allows the optimum combination of impact resistance and transparency. [Pg.399]

Clear impact-resistant polystyrene is a commercial plastic with the desirable combination of toughness and exceptional clarity. It is a styrene-1,3-butadiene multiblock copolymer containing more than 60% styrene. Most of these products are mixtures of block copolymers formed by incremental additions of initiator and monomers followed by coupling (Sec. 5-4c). The products generally have a tapered and multiblock composition with branching (due to the coupling agent). [Pg.438]

The annual worlwide production of triblock thermoplastic elastomers, clear impact-resistant polystyrene, and other styrene-diene products produced by anionic polymerization exceeds a couple of billion pounds. (Commercial utilization of anionic polymerization also includes the polymerization of 1,3-butadiene alone.)... [Pg.438]

Radical copolymerization of styrene with lCM-0% acrylonitrile yields styrene-acrylonitrile (SAN) polymers. Acrylonitrile, by increasing the intermolecular forces, imparts solvent resistance, improved tensile strength, and raises the upper use temperature of polystyrene although impact resistance is only slightly improved. SAN finds applications in houseware... [Pg.529]

High-impact polystyrene (HIPS) is produced by polymerizing styrene in the presence of a rubber, usually poly(l,3-butadiene). HIPS has improved impact resistance compared to polystyrene and competes with ABS products at low-cost end applications such as fast-food cups, lids, takeout containers, toys, kitchen appliances, and personal-care product containers. HIPS as well as ABS and SMA are used in physical blends with other polymers, such as polycarbonates, polyesters, and polyamides, to improve impact resistance (Sec. 2-13c-3). [Pg.530]

Under the conditions of Example 5-23 the rubber phase of the end product shows an interesting micro-morphology. It consists of particles of 1-3 microns diameter into which polystyrene spheres with much lower diameters are dispersed. These included polystyrene spheres act as hard fillers and raise the elastic modulus of polybutadiene. As a consequence, HIPS with this micro-morphology has a higher impact resistance without loosing too much in stiffness and hardness. This special morphology can be visualized with transmission electron microscopy. A relevant TEM-picture obtained from a thin cut after straining with osmium tetroxide is shown in Sect. 2.3.4.14. [Pg.370]

Mechanical data like stress/strain behavior, impact resistance in comparison to polystyrene... [Pg.372]


See other pages where Polystyrene impact resistance is mentioned: [Pg.515]    [Pg.447]    [Pg.450]    [Pg.467]    [Pg.479]    [Pg.515]    [Pg.447]    [Pg.450]    [Pg.467]    [Pg.479]    [Pg.384]    [Pg.357]    [Pg.406]    [Pg.219]    [Pg.659]    [Pg.378]    [Pg.173]    [Pg.173]    [Pg.282]    [Pg.175]    [Pg.365]   
See also in sourсe #XX -- [ Pg.633 ]

See also in sourсe #XX -- [ Pg.604 , Pg.605 , Pg.606 , Pg.607 , Pg.608 ]




SEARCH



Clear impact resistant polystyrene

High-impact polystyrene chemical resistance

High-impact polystyrene resistance

High-impact polystyrene solvent resistance

Impact polystyrene

Impact resistance

Impact-resistant materials polystyrene

Impact-resistant polystyrene

Resistant Polystyrene

© 2024 chempedia.info