Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-impact polystyrene resistance

This lower has a number of ramifications on the properties of polybutadiene. For example, at room temperature polybutadiene compounds generally have a higher resilience than similar natural rubber compounds. In turn this means that the polybutadiene rubbers have a lower heat build-up and this is important in tyre applications. On the other hand, these rubbers have poor tear resistance, poor tack and poor tensile strength. For this reason, the polybutadiene rubbers are seldom used on their own but more commonly in conjunction with other materials. For example, they are blended with natural rubber in the manufacture of truck tyres and, widely, with SBR in the manufacture of passenger car tyres. The rubbers are also widely used in the manufacture of high-impact polystyrene. [Pg.291]

Figure 12.3 Clrromatogr-ams of an ignition-resistant high-impact polystyrene sample (a) Microcolumn SEC fi ace (b) capillary GC trace of peak x . Peak identification is as follows 1, ionol 2, benzophenone 3, styrene dimer 4, palmitic acid 5, stearic acid 6, styrene trimers 7, styrene trimer 8, styrene oligomer 9, Irganox 1076 and Irganox 168 10, styrene oligomer 11, nonabromodiphenyl oxide and 12, decabromodiphenyl oxide. Reprinted with permission from Ref. (12). Figure 12.3 Clrromatogr-ams of an ignition-resistant high-impact polystyrene sample (a) Microcolumn SEC fi ace (b) capillary GC trace of peak x . Peak identification is as follows 1, ionol 2, benzophenone 3, styrene dimer 4, palmitic acid 5, stearic acid 6, styrene trimers 7, styrene trimer 8, styrene oligomer 9, Irganox 1076 and Irganox 168 10, styrene oligomer 11, nonabromodiphenyl oxide and 12, decabromodiphenyl oxide. Reprinted with permission from Ref. (12).
Polystyrene One of the high volume plastics, is relatively low in cost, easy to process, has sparkling clarity, and low water absorption. But basic form (crystal PS) is brittle, with low heat and chemical resistance, poor weather resistance. High impact polystyrene is made with butadiene modifiers provides significant improvements in impact strength and elongation over crystal polystyrene, accompanied by a loss of transparency and little other property improvement. PS is used in many different formulations. [Pg.429]

The styrenic thermoplastic elastomers are the only type which are fully compounded in the manner of conventional elastomers. In this case, however, the addition of carbon black, or other fillers, does not give reinforcement. Additions of polystyrene, or high impact polystyrene, and oil are used to vary hardness and tear strength, and fillers can be used to cheapen the material. Other added polymers, e g., EVA, can be used to increase ozone resistance. These materials also require antioxidants for protection during processing and service life, and the poor UV stability restricts their use in outdoor applications. [Pg.119]

The addition of 20% Ecoflex in PLA reduces the stiffness of PLA by 25% (Fig. 6), keeping the impact strength (e.g., Charpy unnotched impact strength at —20°C, according to ISO 179/leU) at 22 kJ/m, which is above the level of high impact polystyrene. Containers produced from this compound are resistant even to sudden strokes and deform without brittle failure at room temperature (23°C). [Pg.111]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

High-impact polystyrene (HIPS) is produced by polymerizing styrene in the presence of a rubber, usually poly(l,3-butadiene). HIPS has improved impact resistance compared to polystyrene and competes with ABS products at low-cost end applications such as fast-food cups, lids, takeout containers, toys, kitchen appliances, and personal-care product containers. HIPS as well as ABS and SMA are used in physical blends with other polymers, such as polycarbonates, polyesters, and polyamides, to improve impact resistance (Sec. 2-13c-3). [Pg.530]

ABS structural foam has excellent buoyancy, a very low (desirable) stiffness-to-weight ratio, good screw and staple pull-out strengths, and creep resistance superior to that of high-impact polystyrene (HIPS) and polyethylene foams. This is particularly important in load-bearing applications, such as pellets, tote boxes, fumitine, and parts buried under earth loads (6). [Pg.226]

Polymers derived from polystyrene but having alkyl or aryl groups substituted at the benzene ring were synthesized in an effort to improve some of polystyrene properties such as the impact resistance and obtain qualities similar to those achieved using copolymers with 1,3-butadiene (high impact polystyrene or HIPS). The polymers included In this class are poly(3-methylstyrene), poly(4-methylstyrene) CAS 24936-41-2, poly(4-phenylstyrene) CAS 25232-08-0 [115], as well as poly(2-vinylnaphthalene) CAS 28406-56-6. Some of the reports regarding thermal decomposition of these polymers are summarized in Table 6.2.10. [Pg.267]

Since this paper will be restricted to sequential IPN s based on cross-poly butadiene-inter-cross-polystyrene. PB/PS, it is valuable to examine the range of possible compositions, see Figure 2 ( ). The PB/PS IPN polymer pair models high-impact polystyrene, and in fact, many of the combinations made are actually more impact resistant than the commercial materials. In general, with the addition of crosslinks, especially in network I, the phase domains become smaller. The impact resistance of high-impact polystyrene, upper left, is about 80 J/ra. In the same experiment, the semi-I IPN, middle left is about 160 J/m, and the full IPN, lower left, is about 265 J/m (g). Since the commercial material had perhaps dozens of man-years of development, and the IPN composition was made simply for doctoral research with substantially no optimization, it was obvious that these materials warranted further study. [Pg.232]

Perhaps the best known member of the "heat-resistant" styrene plastics family is General Electric s Noryl (34). Noryl is an alloy of poly(phenylene oxide) and high-impact polystyrene. Heat deflection temperatures for Noryl range as high as 300 °F. The balance of mechanical properties is excellent, although processability is more difficult than for conventional styrene plastics. [Pg.378]

As we said earlier, the introduction of aromatic units into the main chain results in polymers with better thermal stability than their aliphatic analogs. One such polymer is poly(phenylene oxide), PPO, which has many attractive properties, including high-impact strength, resistance to attack by mineral and organic acids, and low water absorption. It is used, usually blended with high-impact polystyrene (HIPS), to ease processability in the manufacture of machined parts and business machine enclosures. [Pg.64]

Mary of the problems associated with GP-PS can be alleviated, or at least minimized, through copolymerization, blending, or proper formulation. For example, polystyrene with enhanced impact resistance and toughness is produced by the incorporation of butadiene rubber. High-impact polystyrene... [Pg.430]

High impact polystyrene (HIPS) is an opaque material that has added butadiene rubber, partially as a blend and partially as a graft copolymer, to improve impact resistance. [Pg.123]

Polybutadiene Higher resilience than similar natural rubber compounds, good low-temperature behavior and adhesion to metals, but poor tear resistance, poor tack, and poor tensile strength Blends with natural rubber and SBR manufacture of high-impact polystyrene... [Pg.420]


See other pages where High-impact polystyrene resistance is mentioned: [Pg.558]    [Pg.438]    [Pg.16]    [Pg.309]    [Pg.219]    [Pg.147]    [Pg.81]    [Pg.262]    [Pg.309]    [Pg.207]    [Pg.63]    [Pg.287]    [Pg.321]    [Pg.525]    [Pg.633]    [Pg.789]    [Pg.19]    [Pg.638]    [Pg.368]    [Pg.748]    [Pg.438]    [Pg.357]    [Pg.364]    [Pg.374]    [Pg.212]    [Pg.953]    [Pg.1029]    [Pg.516]    [Pg.143]    [Pg.147]    [Pg.364]    [Pg.422]   
See also in sourсe #XX -- [ Pg.261 , Pg.262 , Pg.263 ]




SEARCH



HIGH IMPACT

Impact polystyrene

Impact resistance

Polystyrene impact resistance

Resistant Polystyrene

© 2024 chempedia.info